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ABSTRACT. A graph G is k-ordered if for every ordered sequence of k vertices, there
is a cycle in G that encounters the vertices of the sequence in the given order. We
prove that if G is a connected graph distinct from a path, then there is a number tg
such that for every ¢t > tg the t-iterated line graph of G, L*(G), is (6(Lt(G))+1)-
ordered. Since there is no graph H which is (6(H)+2)-ordered, the result is best
possible.
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1. INTRODUCTION AND RESULTS

Let G be a graph. Its line graph L(QG) is defined as the graph whose vertices are
the edges of G, with two vertices adjacent if and only if the corresponding edges
are adjacent in GG. Although the line graph operator is one of the most natural
ones, only in recent years there is recorded a larger interest in studying iterated
line graphs. Iterated line graphs are defined inductively as follows:

. G ift=0,
LHG) = -1 :
L(L*Y@G)) ift>o0.
In iterated line graphs the greatest attention was devoted to Hamiltonicity. The
most recent results in this area can be found in a paper by Xiong and Liu [16]. The
diameter and radius of iterated line graphs are examined in [14], and [11] is devoted
to the centres of these graphs. In [8] and [7], Hartke and Higgins study the growth
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of the minimum and the maximum degree of iterated line graphs, respectively. The
connectivity of iterated line graphs is discussed in [10].

A graph G is k-ordered, if for every sequence Z = (21,22, ...,2x) of k distinct
vertices in GG, there exists a cycle that contains all the vertices of Z in the designated
order. In other words, a graph is k-ordered if for every sequence Z = (21, 22, . . ., 2k),
there are k paths z1—=z29, 290—23, ..., 2x_1—2k, Zk—%1, that are internally-vertex-
disjoint. After Chartrand introduced the notion of k-ordered graphs, several au-
thors studied sufficient degree conditions forcing a graph to be k-ordered, see [13],
9], [4], [6], [3], [2] and [12]. Most of the papers deal with conditions based on the
minimum sum of degrees of nonadjacent vertices, but for the minimum degree ¢
the following theorem can be found in [12].

Theorem 1. Every graph G of ordern > 5k with §(G) > [2]+|%]—1 is k-ordered.

For balanced bipartite graphs the degree condition can be slacked to §(G) >
%, provided that for the order n we have n > 618 and 3 < k < 535, see [5].

Let zp be a vertex of minimum degree J in a non-complete graph G. Denote
by z1, z2, ..., 25 the neighbours of zy and choose a vertex z;4; at distance two
from zy. Then for the sequence Z = (zp, 21,...,2s+1) there is no cycle containing
all the vertices of Z in the designated order. Since complete graphs K, have only
d(Ky,) + 1 vertices, the necessary degree condition for a graph to be k-ordered is
d(G) > k — 1. In this paper we show that for iterated line graphs this necessary
condition is also sufficient. We prove the following theorem.

Theorem 2. Let G be a connected graph distinct from a path. Then there is a tg
such that for every t, t > tg, the iterated line graph L*(G) of G is (§(L*(G))+1)-
ordered.

We remark that although the minimum degree of L!(G) grows exponentially, as
a function of ¢, the number of vertices grow doubly exponentially (see [14] for the
bounds on the number of vertices of L!(G)). Hence, the minimum degree is very
small compared to the number of vertices in iterated line graphs. Therefore, from
the point of view of Theorem 1, it may be surprising that iterated line graphs are
maximally ordered.

2. CONNECTIVITY

Let G = (V(G), E(GQ)) be a graph and let v be a vertex of L*(G), t > 1. Then v
corresponds to an edge of L*~!(G), and this edge will be called 1-history of v. For
i > 2 we define i-histories recursively. The i-history of v is a subgraph of L!~¢(G),
edges of which are induced by the vertices of L!~*+1(G) which are in (i—1)-history
of v. The i-history of v is denoted by B(v).

Observe that 1-history is always an edge and 2-history is a path of length 2. For
this reason, if v € V(L}(G)) we write B(v) = (v1,v3), where vivs is the edge of
L'*~1(G) corresponding to v, and B2(v) = (vs,v4,vs), where vz, v4, vs is the path
of length 2 in L*~2(G) corresponding to v.

To distinguish 2-histories from other paths in G we denote the paths without
parentheses; i.e., by P = vy,v9,v3 we denote a vy—v3 path of length two. This
enables us to write an extension of P, by vy at the beginning and by v4 at the end,
as vy, P, v4.

A graph G is k-connected if it has at least k+1 vertices and for every pair of
distinct vertices, say u and v, of G there are k internally-vertex-disjoint paths

2



connecting u with v. Another definition, equivalent with the previous one, says
that a graph G is k-connected if and only if it has at least k+1 vertices and for any
two sets S1 and S5, each of k vertices, there are k vertex-disjoint paths connecting
S1 with S3. Here we use a slightly different definition of connectivity, which is
equivalent with the previous ones.

A collection of vertices {ry,rs,...,rg} (not necessarily distinct) is called a mul-
tiset with k£ (labelled) vertices. Let Ry = {r1,1,71,2,-..,71,k} and Ry = {ra 1,722,
..., T2} be multisets of vertices in a graph G. By k internally-vertex-disjoint paths
connecting R, with Ry we mean a collection P of internally-vertex-disjoint paths,
such that exactly one path of P starts (terminates) in a vertex labelled by r1 ; (r2,),
1 <4 < k. Hence, if r occurs g times in R, then exactly ¢ paths of P start with r.
Analogous statement is true for endvertices of paths of P.

Definition. A graph G is k-connected if and only if it has at least k+1 vertices
and for every two multisets Ry and Ry, each with k vertices, there are k internally-
vertex-disjoint paths connecting R, with Rs.

Observe that this definition is equivalent with the usual one. To see this, suppose
that G is k-connected in the usual sense. We may assume that R; and R, are
disjoint. Moreover, we may assume that there is no edge between a vertex of R;
and a vertex of Ry. Construct from multiset R; a set S;, 1 <7 < 2, such that all
vertices of R; occur in S;, and if r occurs ¢, times in R;, then insert into .S; also
gr — 1 neighbours of r. Since the connectivity cannot exceed the minimum degree,
we can arrange this so that S; will contain exactly k distinct vertices. As G is k-
connected, there are k vertex-disjoint paths connecting S; with Ss, and these paths
can be extended to internally-vertex-disjoint paths connecting the multisets R; and
R,. (Observe that both S; N Ry and S3 N Ry are empty.) Hence, our definition is
a consequence of the usual one. The converse is obvious.

The main statement in this section is Lemma 5. In its proof we use the following
assertion.

Lemma 3. Let H contain at least 7 distinct paths of length 2. Then |E(H)| > 5.

Proof. Since 4 edges admit only () = 6 pairs of edges, and consequently at most
6 paths of length 2, we have |E(H)| > 5. O

For two sets, S1,S2 C V(G), by distg(S1,S2) we denote the minimum distance
in G between a vertex from S; and a vertex from S5. For calculating the distances
in L!*(G) we use the following lemma, see [14].

Lemma 4. Let G be a connected graph, L*(G) be its iterated line graph, and let
u and v be distinct vertices of L*(G). Then for any i, 0 < i < t, if the i-histories
B'(u) and B*(v) are edge-disjoint, then

distre ) (u,v) = distreic) (V(B'(u), V(B'(v))) +i.

If the i-histories of u and v are not edge-disjoint, then distp:(q) (u,v) < 1.

Lemma 5. Let G be a 10-connected graph with the minimum degree §. Further,
let 51,52 Q V(L2(G)), |S1| Z 7, |Sg| 2 7, and let d?:StL2(G)(S1,Sg) 2 2. Then
there are 108 — 50 internally-vertez-disjoint paths connecting Sy with Sy in L?(G).
Proof. Observe that two distinct vertices, say u and v, in L?(G) are adjacent if

and only if B2(u) and B?(v) share an edge in common. Let P = zy, 21,..., 2 be a
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path in G. A path wg,ws,...,w in L?(G) is called a P-based path if for every i,
0 <4 < k', B?(w;) contains an edge of P. As shown in [10], if the length of P is
at least 2, then there are §—1 vertex-disjoint P-based paths in L?(G). These paths
are defined as follows.

There is one special path P, = w1 9, w11, . .., W1 k2, where B%(wy ;) = (24, zj+1,
Zjt+2). Denote by z3 j,23 j,...,25-1,; 0—2 vertices of G that are adjacent to z; and
distinct from z;_; and 241, 1 < 5 < k—1. Then for ¢ = 2,3,...,6—1 we have
Pi = Wji,0,Wi,1y---, wi,z(k_g)_H, where

B2(w. ) = { FU2b A/ Biliaa), i s even,
(wi5) = L
(@i, L2141, 23 20410 213 2)+2), 35 18 odd.

Denote the set of these d—1 paths by Pp.

Let z, P,y and z’, P',y’ be paths in G. If P and P’ are vertex-disjoint, then the
paths of Py p ,UP, pr o are vertex-disjoint as well. Now suppose that P = s, s1,...
and P’ = s, s),... are internally-vertex-disjoint sharing a common starting vertex
s (assume that their endvertices are distinct). Moreover, suppose that z # 2/,
where neither = nor &’ are in V' (P)UV (P’). Then the paths of Py p, U Py pr e are
vertex-disjoint up to some exceptions. But after deleting from P, p, U Py pr 0 two
paths of Py pr v starting with w}, B*(w}) = (', s, z), and wh, B*(w}) = (', s, 51),
respectively, we are left with a set of vertex-disjoint paths.

Denote by H; the subgraph of G formed by edges of 2-histories of vertices of
Si, 1 <4 < 2. By Lemma 3, H; contains at least 5 edges, say €;1,€;2,-..,¢€;s.
Denote e ; = x2;_172; and ez j = yaj_1¥Y2j, 1 < j < 5. By Lemma 4, H, and H,
are edge-disjoint, as distL2(G)(Sl,Sg) > 2. Since G is 10-connected, there are 10
internally-vertex-disjoint paths in G, say Py, Ps, ..., Pig, connecting the multiset
{z1,x2,...,210} With {y1,¥2,...,¥y10}.- Obviously, none of Py, P, ..., Pjy uses an
edge of H;, 1 < i < 2. Extend these paths, each by one vertex at the beginning
and by one vertex at the end, so that the path which started with a vertex labelled
by z; will start with z;41 if ¢ is odd and with z;_; if ¢ is even, and analogously, if
the path terminated with a vertex labelled by y; it will finish with y;4, if j is odd
and with y;_, if j is even. In such a way, every path starts with an edge of H; and
it terminates with an edge of Hy. Denote by Q1,Q2, ..., Q10 the set of extended
paths.

Since Py, Py, ..., Pig are internally-vertex-disjoint, the paths of Pg, UPg, U---U
Pg,, are vertex-disjoint up to some exceptions. By the previous analysis, with
every pair of adjacent edges e; ; and e; j» we must delete two paths. Observe that 5
edges admit at most (g) = 10 adjacent pairs of edges. Thus, deleting 2-10 paths will
solve the situation at Hp, and deleting another 2 - 10 paths will solve the situation
at Hy. Hence, in Py, UPg, U+ UPq,, there are 10(6—1) — 4 -10 = 100 — 50
vertex-disjoint paths. For each of these paths, its starting vertex is adjacent with a
vertex of S, and its terminal vertex is adjacent with a vertex of Sy. Hence, there
are 105 — 50 internally-vertex-disjoint paths connecting S; with S, in L3(G). O

The next statement can be found in [10].

Theorem 6. Let G be a connected graph with the minimum degree 6 > 3. Then
L%(G) is (6—1)-connected.

We conclude this section with a lemma, which is in a sense complementary to
Lemma 5.



Lemma 7. Let G be a graph with the minimum degree 6 > 2, and let u and v be
vertices in L2(G). Then there are at least 65 — 12 distinct vertices in V (L%(G)) —
{u,v}, which are adjacent to either u or v.

Proof. Let w be a vertex of L2(G) with B%(w) = (wo, w1, wz). Since §(G) = 4,
in L?(G) there are §—1 neighbours of w with 2-history (z, wg,w,) for some z, and
there are 0—2 neighbours of w with 2-history (wp,w;,x) for some xz. Hence, the
total number of neighbours of w in L?(G) is at least 2(26 — 3) = 49 — 6.

Let us consider 2-histories of u and v. If B%(u) and B2(v) do not share an edge,
then it is a matter of routine to check that there are at most 4 vertices which are
adjacent to both u and v. Hence, the number of vertices adjacent to either u or v
is at least (46—6) 4 (46—6) —4 =80 — 16 > 66 — 12.

Now suppose that B?(u) and B2(v) share an edge. Then B?(u) U B2(v) forms
either a path, or a triangle, or a claw K 3, and the neighbourhood of {u, v} contains
at least 60 — 10, 66 — 11, 66 — 12 vertices, respectively. [

Notice that 6(L?(G)) > 46(G) — 6. If §(L3(G)) = 46(G) — 6, then by Lemma 7,
for any pair of vertices u,v € V(L?(G)), there are at least 36(L*(G)) — 3 vertices
in V(L?(G)) — {u,v} which are adjacent to either u or v.

3. SEPARATIONS

Observe that the t-iterated line graph of a path on n vertices is a path on n—t
vertices for t < n and an empty graph if £ > n. The iterated line graph of a cycle
is isomorphic to the original cycle, and each iterated line graph of a claw K, 3 is
isomorphic to a triangle. Hence, it suffices to study connected graphs distinct from
paths, cycles and the claw K; 3. Such graphs are called prolific, since every two
members of the sequence {L*(G)}$2, are non-isomorphic.

We are interested in t-iterated line graphs when ¢ is ‘big enough’. For these
graphs Hartke and Higgins in [8] proved the following theorem.

Theorem 8. Let G be a prolific graph. Then there is an ig such that for every t,
1> 1q, we have

S(LFHG)) = 2 §(Li(G)) — 2.

A separation of a graph G is a pair (A, B) of subsets of V(G), such that AUB =
V(G) and there is no edge in G joining a vertex of A — B with a vertex of B — A.
The order of separation (A, B) is |AN B|. In [15] there is the following theorem.

Theorem 9. Let G be a graph and let Z C V(G). Let m > |3|Z|| and let
G1,Gy,...,Gy be connected subgraphs of G, mutually vertex-disjoint, such that
for 1 < i < j < m there is an edge of G between G; and G;. Suppose that there
is no separation (A, B) of G of order < |Z| with Z C A and ANV (G;) = 0 for
some i (1 <i<m). Then for every partition (Z1,Zs,...,Zy) of Z into non-empty
subsets, there are n connected subgraphs Ty, Ts, ..., T, of G, mutually disjoint and
withV(T;)NZ =2; (1<j<n).

The next statement can be found in [1].

Lemma 10. Let G be a graph with the minimum degree 6 > 5, and m = 6-|/0—1].
Then there is a subgraph K of L*(G), such that K,, is a minor of K.

In the proof of Theorem 2 we examine separations which separate a set Z of
§(L*(G))+1 vertices from a subgraph K mentioned in Lemma 10.
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Proof of Theorem 2. Since the statement of Theorem 2 is obvious for cycles and
the claw K7 3, assume that G is a prolific graph. Denote 6, = §(L*~"(G)). Suppose
that ¢ is so big that 04 > 11, d3 > 577 and t > ig + 3, where ig is the constant
from Theorem 8.

By Lemma 10, there is a subgraph K of L!*(G) such that K,, is a minor of K,
m = 03 - [\/03—1]. Ast > ig + 3, we have §y = 803 — 14 by Theorem 8. Since
03 > 577, we have

m = 03 - L\/ (53—1J > 2403 > 3(50 + 1) = 3‘Z|

Denote by G;, 1 < i < m, the subgraphs of K which form the vertices of K,, when
contracted into single vertices. We may assume that every G; is so large that it is
connected to every G, j # 1, by an edge. In [1] there is described a construction of
the graph K. The number of vertices in each of the subgraphs G; is much greater
than 7 (in fact |V(G;)| > 24424 - (03—1)). The construction is rather technical, so
that we do not repeat it here.

Let H = L*(G). Denote by Z = {29, 21, - - -, 25, } the set of p+1 vertices which
have to be traversed in a given order. Assume that these vertices are labelled so
that the required cycle must pass them in order zy, 21, ..., z5,. Replace every vertex
z; € Z by pair of adjacent vertices z; and z;r which are connected by an edge to
every neighbour of z; in H, and denote the resulting graph by H*. We show that H*
contains vertex-disjoint paths connecting z;L with z;,,, 0 < i < dp (the indices are
taken modulo dp+1). To do this, it is sufficient to show that there is no separation
(A*, B*) of order < 2(6p+1) in H*, such that Z* = {25, zd, .. .,zé_o,zjo} C A* and
V(G;) C B* — A* for some i, 1 < i < 2|Z*| = 3|Z|, by Theorem 9. In the rest of
the proof we call a separation of order < |Z*| a bad one.

Suppose that there is a bad separation. If one of z; , z;" belongs to A* — B*,
then we may assume that both of them do, since these vertices have identical
neighbourhood in H* — {z;, 2;"}. Hence, (A*, B*) induces a separation (4, B) of
H.

First suppose that for the induced separation (A, B) we have |A— B| > 7. Since
84 > 11, the graph Lt=? is 10-connected, by Theorem 6. For every G; with V(G;) C
B — A we have distrq)(V(Gi), A—B) > 2, and also |[V(G;)| > 7 and |[A— B[ > T.
Hence, applying Lemma 5 to L*=2(G) we get |[A N B| > 106 — 50 > 83, — 10.
(Observe that o > 20 follows from d3 > 577.) Since t > ig+2, we have 6y = 402 —6,
so that 863 — 10 = 2(dp+1). Hence |A* N B*| > |AN B| > 2(dp+1) = |Z*|, so that
the separation cannot be bad.

Now suppose that 2 < |A — B| < 6. The neighbourhood of two vertices from
A — B contains at least 602 — 12 vertices by Lemma 7. As |[A — B| < 6, we have
|AN B| > 603 — 12 — 4 = 602 — 16. Since t > ig + 2, we have dy = 43 — 6, which
implies that AN B contains at least o —5 = 405 —11 vertices from Z. As the vertices
of Z are ‘doubled’ in H*, we have |A* N B*| > 602 — 16 + 463 — 11 = 1053 — 27 >
832 — 10 = 2(dp+1). (Observe that d2 > 9 follows from d3 > 577.) Thus, also in
this case the separation cannot be bad.

If (A— B)NZ = ( then the separation cannot be bad as Z C AN B, and
consequently |A* N B*| > 2(dp+1). Thus, we may assume that A — B = {zp}. If
the neighbourhood of zy contains at most dg — 2 vertices of Z, then it contains at
least two vertices outside Z, so that |[A* N B*| > 2§y + 2. Thus, the neighbourhood
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of zp contains at least dg — 1 vertices from Z. Denote by N the set of neighbours
of zgp in H. There are two cases to distinguish:

Case 1: |A* N B*| = 2§p. In this case the separation is bad, so that we cannot
apply Theorem 9 on Z* in H*. However, now N = Z — {2y}, so that there are
edges zs5,20 and zpz; in H. Thus, it is sufficient to find internally-vertex-disjoint
paths z1—22, z0—23, ..., 25,—1—2s, i H. To do this, we consider a new graph H'.

Let H' be obtained from H* by contracting the edges 25, zg; and z; 2], and by
deleting the vertices z; and z(J{. Further, let Z' = {21, 25 , z;, e 2y 1 z;{)_l, 250 -
Since we have deleted just two vertices from the graph, it contains a subgraph K’
such that Kp,_» is a minor of K'. However, m—2 > 3(dp+1)—2 > 3(dp—1) = 3|Z/|.
Hence H' contains, as a minor, a ‘sufficiently big’ complete graph.

By Theorem 9, it is sufficient to show that there is no separation (A’, B') of
order < |Z'| = 2(69—1) in H’, such that Z' C A’ and V(G;) C B’ — A’ for some i,
1 < i< 2|Z'|. Analogously as above, denote by (A4, B) a separation in H induced
by the separation (A’, B’) in H'. We remark that for the induced separation (A, B)
we always set zop € AN B. In the next we consider separations (A’, B').

First suppose that for the induced separation (A, B) we have |A — B| > 7. Then
|AN B| > 1063 — 50, and analogously as above we get |[A'NB'| > |[ANB|—-2>
2(00—1) = |Z'|.

Now suppose that |A — B| < 6. Since (A’, B') cannot be bad if (A— B)NZ =
(0, suppose that there is 2z’ € A’ — B’, where 2/ € Z'. Denote by z the vertex
of H corresponding to z’. By Lemma 7, there are at least 6Jo — 12 vertices in
V(H) — {20, 2}, which are adjacent to either zy or z. As a consequence, there are
at least 602 — 12 — (6p — 1) = 285 — 5 vertices from V(H) — Z which are adjacent
to z. But then |[A'N B’| > 2(dp—1) — 6+ 2d3 — 5 > 2(dp—1) = |Z'|.

Hence, there is no bad separation in H’, so that by Theorem 9 there are vertex-
disjoint paths z1—z; , 25 =25, ..., 25, _;—%s, in H'.

Case 2: |A* N B*| = 2§y + 1. Also in this case the separation is bad, so that
we cannot apply Theorem 9 on Z* in H*. But since N contains at least g — 1
vertices from A, either z5,2p or zpz; is in H. By symmetry, we may assume that
2021 € E(H)

Consider a graph H' obtained from H* by contracting the edges z; za' and 2] 27,
with Z' = {20, 21,25 , 25 5+ - -, 25,5 zg;}. By Theorem 9, it is sufficient to show that
there is no separation (A’, B") of order < |Z'| = 2§y in H’, such that Z’ C A" and
V(G;) C B'— A’ for some i, 1 < i < 3|Z'|.

However, for the separation (A’, B') with A’ — B’ = {2y} we have |[A'NB’| = 24,
since |A* N B*| = 2§y + 1. And analogously as in the previous case one can show
that the other separations are not bad. Hence, there is no bad separation in H'.

By Theorem 9, there is a cycle in H traversing the vertices of Z in the prescribed
order. As the only assumption on Z was |Z| = §p + 1, the graph H = L}(G) is
(6o+1)-ordered. O
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