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Abstract

An embedding M of a graph G is said to be regular if and only
if for every two triples (v1, e1, f1) and (v2, e2, f2), where ei is an
edge incident with the vertex vi and the face fi, there exists an
automorphism of M which maps v1 to v2, e1 to e2 and f1 to f2. We
show that for n 6≡ 0 (mod 8) there is, up to isomorphism, precisely one
regular Hamiltonian embedding of Kn,n in an orientable surface, and
that for n ≡ 0 (mod 8) there are precisely two such embeddings. We
give explicit constructions for these embeddings as lifts of spherical
embeddings of dipoles.

AMS classification: 05C10.

1



1 Introduction

Topological graph theory is concerned with embedding graphs in surfaces
in such a way that the edges of the graph intersect only at the vertices
with which they are incident. Such an embedding is called a map; see [6]
for precise definitions. The surface may be orientable or nonorientable.
Amongst the embeddings of a graph G, particular interest arises in those
embeddings which possess the greatest possible symmetry. An embedding
M of a graph G is said to be regular if and only if for every two flags,
i.e. triples (v1, e1, f1) and (v2, e2, f2), where ei is an edge incident with the
vertex vi and the face fi, there exists an automorphism of M which maps
v1 to v2, e1 to e2 and f1 to f2. Plainly G can have a regular embedding M
only if G is both vertex and edge transitive. Furthermore, the regularity
of an embedding M requires that all the face boundaries are of the same
length.

We point out that the definition of regularity varies somewhat between
authors; see [1] (p.36) for a discussion of the terminology. The definition
given here requires the admission of automorphisms which reverse the orien-
tation of the surface in the orientable case. However, many authors require
that any global orientation of the surface is preserved and this means that
their regular embeddings may be less symmetric.

There is a considerable body of published material relating to regular
embeddings. Recent articles include [7] and [10], and the survey papers [9]
and [13]. With the exception of complete graphs, see [2, 8], it is perhaps
fair to say that there are few definitive results which describe all regu-
lar embeddings of a certain type for some particular class of graphs. The
purpose of this paper is to determine those regular embeddings of the com-
plete bipartite graph Kn,n in an orientable surface whose face boundaries
are Hamiltonian cycles. In [3, 12], the authors give one such embedding for
each n. In any such embedding M , it is easy to see that |Aut(M)| = 4n2

and that the genus of the surface is g = (n − 1)(n − 2)/2. Computational
results given in [4] show the uniqueness of such embeddings for 3 ≤ n ≤ 7.
We will show that for n 6≡ 0 (mod 8) there is, up to isomorphism, precisely
one such embedding and that for n ≡ 0 (mod 8) there are precisely two
such embeddings. We give explicit constructions for these embeddings as
lifts of spherical embeddings of dipoles, using current assignments in Zn.
We refer the reader to [6] for a general discussion of voltage graphs.

In a further paper [5], it is shown that for each positive integer n there
is a unique regular triangular embedding M∗ of the complete tripartite
graph Kn,n,n in an orientable surface. The two problems are related since,
by selecting one of the three sets of the tripartition of Kn,n,n and deleting
these vertices and the edges incident with them, one may obtain from M∗

a regular Hamiltonian embedding of Kn,n in an orientable surface. The
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existence, for n ≡ 0 (mod 8), of a second regular Hamiltonian embedding
of Kn,n in an orientable surface shows that this process cannot, in general,
be reversed.

2 Results

In order to formulate our results it is first necessary to discuss the dipole
embedding mentioned in the Introduction. Let M be an embedding in a
sphere of a graph with two vertices u and v, and n parallel edges. Then each
face of the embedding is a 2-gon. Further, let a0, a1, . . . , an−1 be voltages
in the clockwise rotation on the arcs emanating from u, see Figure 1, such
that {a0, . . . , an−1} = {0, . . . , n−1}. Then the voltages around v in the
clockwise rotation are −an−1,−an−2, . . . ,−a0. Suppose that for each i,
0 ≤ i ≤ n−1, the differences ai − ai−1 are coprime with n (the indices are
always taken modulo n).

s
u

sv

. . .
6 6 6 6 6a0 a1 a2 an−2 an−1

Figure 1: Voltage graph for biembedding.

Now consider the lift of M with voltages over the group Zn. In the lift
we have vertex sets U = {u0, u1, . . . , un−1} and V = {v0, v1, . . . , vn−1}, and
as all ai − ai−1 are coprime with n, each face (2-gon) of M is lifted to a
2n-gon. Hence, we get an embedding of the complete bipartite graph Kn,n

in an orientable surface in which every face is bounded by a Hamiltonian
cycle. We denote this embedding by B(u, v;α), where α is the permuta-
tion (a0, a1, . . . , an−1). The particular case when α = (0, 1, . . . , n− 1) was
considered in [11].

Next we examine possible isomorphisms of B(u, v;α) and B(u, v;β).
Clearly, if β = (ak+0, ak+1, . . . , ak+(n−1)), i.e., if β is obtained by rotating
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α, then the corresponding voltage embeddings (of dipoles) in the sphere are
identical. Hence, in this case the lifted embeddings are not only isomorphic,
they are identical.

Now suppose that β = (k+a0, k+a1, . . . , k+an−1), i.e., β is obtained by
adding a constant k to every voltage of α, which we denote by β = k + α.
Then a mapping µ, such that µ(ui) = ui and µ(vi) = vk+i, 0 ≤ i ≤ n−1, is
an isomorphism of B(u, v;α) onto B(u, v;β).

Next, suppose that β = (ka0, ka1, . . . , kan−1), i.e., β is obtained by
multiplying the voltages of α by a constant k coprime with n, which we
denote by β = kα. Then a mapping µ, such that µ(ui) = uki and µ(vi) =
vki, 0 ≤ i ≤ n−1, is an isomorphism of B(u, v;α) onto B(u, v;β).

Finally, suppose that β = (an−1, an−2, . . . , a0), i.e., β is obtained by re-
versing the permutation α, which we denote by β = α−1. Then B(u, v;β) is
isomorphic to B(u, v;−β), where −β = (−1)β = (−an−1,−an−2, . . . ,−a0),
so that it is enough to find an isomorphism µ mapping B(u, v;α) onto
B(u, v;−β). But this can be done by µ(ui) = vi and µ(vi) = ui, 0 ≤ i ≤
n−1.

We say that two permutations α and β are equivalent, if β can be ob-
tained from α by a sequence of operations consisting of rotating, adding,
multiplying and reversing. From the foregoing discussion, it is clear that
if two permutations are equivalent, then the corresponding embeddings are
isomorphic. In fact the converse is also true.

Lemma 2.1 If B(u, v;α) and B(x, y;β) are isomorphic embeddings then
α and β are equivalent permutations.

Proof First suppose that B(u, v;α) and B(x, y;β) are isomorphic embed-
dings with isomorphism µ sending {U} onto {X} and {V } onto {Y }.

Assume that µ(u0) = x−kr for some −kr ∈ Zn. In B(x, y;β) consider
a mapping ν such that ν(xi) = xkr+i and ν(yi) = ykr+i, 0 ≤ i ≤ n−1.
Then ν is an automorphism of B(x, y;β) which maps x−kr

onto x0. Hence,
composing µ with ν we get an isomorphism µr mapping B(u, v;α) onto
B(x, y;β), such that µr(u0) = x0.

Now assume that µr(v0) = y−ka
. Then B(x, y;β) is isomorphic to

B(x, y; ka +β), and composing µr with this isomorphism we get an isomor-
phism µa mapping B(u, v;α) onto B(x, y; ka + β), such that µa(u0) = x0

and µa(v0) = y0.
Further, α = (. . . ,−d, 0, . . .) for some d coprime with n. Assume that

µa(ud) = xd∗ . Observe that the 2-gon of the voltage graph with vertices
u and v and voltages 0 and −d is lifted to a 2n-gon with boundary cycle
u0, v0, ud, vd, . . . , u−d, v−d in B(u, v;α). As µa induces an isomorphism of
B(u, v;α) onto B(x, y; ka + β), the image of this face is again a face and
its boundary cycle is x0, y0, xd∗ , yq1 , xq2 , . . .. However, as all the faces of
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B(x, y; ka + β) are obtained by lifts of 2-gons of a voltage graph, we have
ka + β = (. . . ,−d∗, 0, . . .), where d∗ is coprime with n. Thus, there is
a multiplier km such that kmd

∗ = d. Now B(x, y; ka + β) is isomorphic
to B(x, y; km(ka + β)), and composing µa with this isomorphism gives a
new isomorphism µm mapping B(u, v;α) onto B(x, y;βm), βm = km(ka +
β), in which µm(u0) = x0, µm(v0) = y0, and µm(ud) = xd. Moreover,
the face f : u0, v0, ud, vd, . . . , u−d, v−d is mapped onto the face µm(f) :
x0, y0, xd, yd, . . . , x−d, y−d, so that µm(ui) = xi and µm(vi) = yi. Observe
that all vertices of the embedded complete bipartite graphs appear on these
two faces. It follows that α = βm, and, as βm is equivalent to β, so is α.

Now suppose that µ(U) = Y and µ(V ) = X. As B(x, y;β) is identical
with B(y, x;−β−1), the mapping µ takes B(u, v;α) onto B(y, x;−β−1).
Obviously, this reduces the case to the previous one.

We can now proceed to the statement and proof of our main result.

Theorem 2.1 If M is a regular Hamiltonian embedding of Kn,n in an
orientable surface, then M is isomorphic with some B(u, v;α), where α =
α(d) = (0, 1, d+ 1, d2 + d+ 1, . . . , dn−2 + dn−3 + . . .+ d+ 1) and either

(i) d = 1, or

(ii) n ≡ 0 (mod 8) and d = n/2 + 1.

Conversely, if M = B(u, v;α(d)), where either (i) or (ii) holds, then M is
a regular Hamiltonian embedding of Kn,n in an orientable surface.

Proof LetM be a regular Hamiltonian embedding of the complete bipartite
graph Kn,n in an orientable surface. The embedding M has n faces, each
of which contains all 2n vertices of the graph. Let f0 be one of these
faces. Denote the vertices of the boundary cycle of f0 consecutively (say
anti-clockwise) by

u0, v1, u1, v2, . . . , un−1, v0.

Consider the clockwise rotation around u0. In this rotation we have
a sequence . . . , v0, v1, vd+1, . . . for some d with 1 ≤ d ≤ n − 2. There
is an automorphism ψk mapping (u0, u0v1, f0) onto (uk, ukvk+1, f0), 0 ≤
k ≤ n−1. By considering the boundary of f0, we find that ψk(ui) =
uk+i and ψk(vi) = vk+i. Hence in the clockwise rotation around uk we
have . . . , vk, vk+1, vk+d+1, . . .. There is also an automorphism χl mapping
(u0, u0v1, f0) onto (vl, vlul−1, f0), 0 ≤ l ≤ n−1. By considering the bound-
ary of f0, we find that χl(ui) = vl−i and χl(vi) = ul−i. Hence in the
clockwise rotation around vl we have . . . , ul−(d+1), ul−1, ul, . . .. It follows
that there is a face f1 with boundary cycle (reading anti-clockwise)

v1, u0, vd+1, ud, v2d+1, u2d, . . . , u−d.
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Note that this implies that d is coprime with n.
There is an automorphism θ mapping (u0, u0v1, f0) onto (u0, u0vd+1, f1).

By considering the boundaries of f0 and f1 we find that θ(ui) = udi and
θ(vi) = vdi+1. Then by applying θj for j = 1, 2, . . ., it follows that the
clockwise rotation around u0 has the form . . . , v0, v1, vd+1, vd2+d+1, . . .. Ap-
plying ψk to this, we deduce that the clockwise rotation around uk has the
form . . . , vk, vk+1, vk+d+1, vk+d2+d+1, . . ., and applying χl we see that the
clockwise rotation around vl has the form . . . , ul−(d2+d+1), ul−(d+1), ul−1,
ul, . . .. Note that these require the n numbers 0, 1, d+1, d2+d+1, . . . , dn−2+
dn−3+. . .+d+1, to be distinct modulo n, and that dn−1+dn−2+. . .+d+1 ≡
0 (mod n). It follows that M ′ = B(u, v;α) where α = (0, 1, d+1, . . . , dn−2+
dn−3 + . . .+ d+ 1).

There is an automorphism π mapping (u0, u0v1, f0) to (u0, u0v1, f1).
By considering the boundaries of f0 and f1, we find that π(ui) = u−di

and π(vi) = v−di+d+1. Applying π to the rotation about u0 given above,
we find that this rotation in the anti-clockwise sense must have the form
. . . , vd+1, v1, v−d2+1, v−d3−d2+1, . . .. Comparing this with the original ver-
sion gives, in particular, v−d2+1 = v0 and consequently d2 ≡ 1 (mod n).
The equation dn−1 + dn−2 + . . . + d + 1 ≡ 0 (mod n) implies that dn ≡ 1
(mod n), and so if n is odd we must have d = 1.

Now suppose that d 6= 1 and consequently that n is even. Then {0, 1, d+
1, d2 + d+1, . . . , dn−2 + dn−3 + . . .+ d+1} ≡ {0, 1, d+1, d+2, 2d+2, 2d+
3, 3d+ 3, . . . , (r− 1)d+ r} (mod n) where n = 2r. We require that these n
numbers are all distinct modulo n and that rd+ r ≡ 0 (mod n). It follows
that the least value of l ∈ {1, 2, . . . , n} for which l(d + 1) ≡ 0 (mod n)
should be l = r, and the next lowest value should be l = 2r. However we
also have (d − 1)(d + 1) ≡ 0 (mod n) and d ∈ {1, 2, . . . , n − 1}. So we
conclude that d− 1 = r, giving d = r + 1. Since d2 = r2 + 2r + 1 ≡ r2 + 1
(mod n), we must have r2 ≡ 0 (mod n). Hence r is even and we may write
n = 4s and d = 2s+ 1.

Now suppose that s is odd; s = 2t + 1, say. Then n = 8t + 4 and
d = 4t+ 3. We have (2t+ 1)(d+ 1) = (2t+ 1)(4t+ 4) = (8t+ 4)(t+ 1) ≡ 0
(mod n), so that r = 4t+2 is not the lowest value of l for which l(d+1) ≡ 0
(mod n). It follows that if d 6= 1 then n ≡ 0 (mod 8) and d = n/2+1. This
completes the proof of the first part of the Theorem.

Assume now that d = 1, or that n ≡ 0 (mod 8) and d = n/2 + 1. Then
d, n are coprime and d2 ≡ 1 (mod n). Furthermore, {0, 1, d + 1, d2 + d +
1, . . . , dn−2 + dn−3 + . . .+ d+ 1} ≡ {0, 1, . . . , n− 1} (mod n); this is trivial
if d = 1 while for n = 8t and d = 4t + 1 the values on the left-hand side
give {0, 1, d+1, d+2, 2d+2, 2d+3, 3d+3, . . . , (r−1)d+ r} (mod n) where
r = 4t. For two of these to be congruent modulo n requires the existence
of some integer l ∈ {1, 2, . . . , 4t − 1} for which either l(d + 1) ≡ 0 or ±1
(mod n). The latter is impossible for any l since d+1 and n are even, while
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the former requires that l(4t+ 2) = k(8t) for some integer k which is then
necessarily a multiple of 2t + 1, giving the minimum positive value of l as
4t. It follows that M = B(u, v;α) is a Hamiltonian embedding of Kn,n in
an orientable surface if α = α(d) and conditions (i) or (ii) of the Theorem
are satisfied. It remains to prove that the embedding is regular. To do this
we now define mappings of the vertices, show that these are automorphisms
of the embedding, and establish that every flag may be mapped to every
other flag by a suitable combination of these mappings.

The mappings ψk, χk, θ, π, 0 ≤ k ≤ n− 1, are defined as follows:

ψk(ui) = uk+i, ψk(vi) = vk+i,
χk(ui) = vk−i, χk(vi) = uk−i,
θ(ui) = udi, θ(vi) = vdi+1,
π(ui) = u−di, π(vi) = v−di+d+1.

We also require the rotations at ui and vi, 0 ≤ i ≤ n − 1, which may be
obtained from Figure 1 as

ui : vi, vi+1, vi+d+1, vi+d2+d+1, . . . , vi+dn−2+dn−3+...+d+1

vi : ui−(dn−2+dn−3+...+d+1), . . . , ui−(d2+d+1), ui−(d+1), ui−1, ui

The algebraic form of these may be simplified using the identity d2 ≡ 1
(mod n). It is a routine matter to check that the application of each of the
mappings ψk, χk, θ, π to these rotations gives other rotations in B(u, v;α),
so that these mappings are indeed automorphisms of the embedding. For
example, applying π to the rotation at ui gives the rotation at u−di as

u−di : v−di+d+1, v−di+1, v−di−d2+1, v−di−d3−d2+1, . . . , v−di−dn−1−dn−2−...−d2+1

Replacing −di by j and using d2 ≡ 1 (mod n), this may be written as

uj : vj+d+1, vj+1, vj , vj−d, . . . , vj+d+2

which is the same as that obtained from Figure 1 with the orientation
reversed. In fact, ψk and θ preserve orientation while χk and π reverse
orientation.

To prove that the embedding is regular, select integers k, l ∈ {0, 1, . . . ,
n − 1}. We prove first that there is an automorphism sending the flag
(u0, u0v1, f0) to (uk, ukvl, f

∗) where f0 and f∗ are the faces on the left
hand side of the arcs u0v1 and ukvl respectively. To do this, take j such
that dj + dj−1 + . . . + d + 1 ≡ l − k (mod n). Then ψkθ

j(u0) = uk

and ψkθ
j(v1) = vdj+dj−1+...+d+1+k = vl, and it follows that ψkθ

j is the
required automorphism. Furthermore, ψkθ

jπ sends the flag (u0, u0v1, f0)
to (uk, ukvl, f

′) where f ′ is the face on the right hand side of the arc ukvl.
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Next we prove that there is an automorphism sending the flag (u0, u0v1,
f0) to (vl, vluk, f

∗). With j as in the previous paragraph, χlθ
j(u0) = vl

and χlθ
j(v1) = ul−(dj+dj−1+...+d+1) = uk, and it follows that χlθ

j is the
required automorphism. Furthermore, χlθ

jπ sends the flag (u0, u0v1, f0) to
(vl, vluk, f

′).
We have shown that the flag (u0, u0v1, f0) may be mapped to any other

flag by an automorphism of the embedding. Consequently any flag may be
mapped to any other flag and the embedding is regular.

Corollary 2.1.1 Up to isomorphism, for n 6≡ 0 (mod 8) B(u, v;α(1)) is
the unique regular Hamiltonian embedding of Kn,n in an orientable surface.
For n ≡ 0 (mod 8) there are precisely two nonisomorphic embeddings of this
type, namely B(u, v;α(d)) for d = 1 and d = n/2 + 1.

Proof The result follows from the Theorem once it is shown that in the
n ≡ 0 (mod 8) case, the two embeddings are nonisomorphic. This can
be established using Lemma 2.1. Any permutation β = (b0, b1, . . . , bn−1)
equivalent to α(1) will be obtained from α(1) by a finite sequence of the
operations multiplication, reversal, rotation and addition. It follows that
bi+1 − bi ≡ bj+1 − bj (mod n) for any i, j. However, the permutation
α(n/2 + 1) does not have this property and consequently is not equivalent
to α(1).
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