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Radlinského 11, 813 68 Bratislava, Slovakia,

E-mail: knor@vox.svf.stuba.sk,
E-mail: siran@lux.svf.stuba.sk.

Abstract. Orientable triangular embeddings of the complete tripartite graph
Kn,n,n correspond to biembeddings of Latin squares. We show that if n is prime
there are at least en ln n−n(1+o(1)) nonisomorphic biembeddings of cyclic Latin
squares of order n. If n = kp, where p is a large prime number, then the
number of nonisomorphic biembeddings of cyclic Latin squares of order n is at
least ep ln p−p(1+ln k+o(1)). Moreover, we prove that for every n there is a unique
regular triangular embedding of Kn,n,n in an orientable surface.

This is a preprint of an article accepted for publication in Discrete Mathematics
c©2005 (copyright owner as specified in the journal).

1. Introduction

For more than a century, graphs have been studied as objects embedded in
surfaces. A prominent example is the problem of determining the smallest genus of
an orientable surface that embeds Kn, the complete graph of order n. In its dual
form this is the famous Heawood map colouring problem. It took more than three
quarters of a century until a complete solution (with extension to nonorientable
surfaces) appeared [7], using methods that gave birth to modern topological graph
theory [6].

A natural design-theoretic interpretation of genus embeddings of Kn arises when
the embeddings are triangular. This happens in the orientable case if and only if
n ≡ 0, 3, 4 or 7 (mod 12) and in the nonorientable case if and only if n ≡ 0 or 1
(mod 3), n 6= 3, 4 or 7, see [7,9]. In the latter case the triangular faces form a
twofold triple system, TTS(n), and in the former case a Mendelsohn triple system,
MTS(n). See [2] for definitions of design theoretic terms. We may thus say that the
designs are embedded in the surface. The problem of determining precisely which
TTS(n) and MTS(n) can be so embedded was solved by Ducrocq and Sterboul,
[3].

Key words and phrases. Latin square, triangulation, orientable embedding, regular embedding.
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If n is odd, it may be possible to colour the faces of a triangular embedding of Kn

using two colours, say black and white, in such a way that adjacent faces receive
different colours. Such embeddings are said to be face 2-colourable and the faces
of each colour class form a Steiner triple system, STS(n). Again, we say that each
STS(n) is embedded in the surface and that the pair of STS(n)s is biembedded.

Trying to go beyond Steiner, Mendelsohn and twofold triple systems one may
ask about possibilities of representing other designs and combinatorial structures
on surfaces. For block designs such a study has been initiated in [10] where sur-
face realizations of designs are obtained via embeddings of the associated bipartite
point-block graphs. In the case of embeddings of Steiner triple systems this ap-
proach corresponds to face 2-colourable embeddings of complete graphs whose faces
in one of the two colour classes correspond to the Steiner triple system.

The general approach of applying design theoretic methods to problems of topo-
logical graph theory has been very profitable. For many years after the publication
of [7], only a small number of triangulations of Kn were known for any n. In [1]
and [5] recursive constructions were described to establish, for values of n lying in

certain residue classes, the existence of 2cn2−o(n2) nonisomorphic face 2-colourable
triangulations of Kn using Steiner triple systems of order n.

In this paper, we turn our attention to the study of triangulations of the complete
tripartite graph Kn,n,n and in particular to those triangulations which are face 2-
colourable. One motivation for this is that in [5], the constructions presented use
“bridges” which are face 2-colourable triangulations of Kn,n,n. The second reason is
that such embeddings correspond to biembeddings of two Latin squares. Also in [5]

it was proved that for n ≡ 0 (mod 3) there are at least 2n2/9−o(n2) nonisomorphic
biembeddings of this type. The Latin squares involved in these constructions are
not identified. In this paper we use a lift of the embedding of a dipole with multiple
edges in a sphere, see also [8], to obtain en ln n−n(1+o(1)) nonisomorphic biembeddings
of cyclic Latin squares in the case where n is a prime. We remark that, as our
embeddings are obtained by voltage assignments on Zn, the automorphism group
of each embedding has order at least n.

In a previous paper, [4], it was shown that face 2-colourability of triangulations
of Kn,n,n is equivalent to orientability. The same paper also contains enumeration
results for biembeddings of Latin squares of order 7 or less. Relatively few of these
biembeddings have a “large” automorphism group. For example among the 23,664
nonisomorphic biembeddings of Latin squares of order 7 given in [4] there are only
18 with an automorphism group of order at least 7. Of these, 13 can be obtained
by the dipole construction. We also find that for each n, 2 ≤ n ≤ 7, there is only
one regular triangular embedding of Kn,n,n in an orientable surface. Motivated by
this, we prove that for any n, n ≥ 2, there is a unique regular orientable triangular
embedding of Kn,n,n.

2. Results

For triangulations of Kn,n,n in an orientable surface we use lifts and voltage
assignments. Readers unfamiliar with these terms are directed to [6]. Let M be
an embedding in a sphere of a graph with two vertices u and v and n parallel
edges. Then each face of the embedding is a 2-gon. Further, let a0, a1, . . . , an−1 be
voltages in the clockwise rotation on the arcs emanating from u, see Figure 1, such
that {a0, . . . , an−1} = {0, . . . , n−1}. Then the voltages around v in the clockwise
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rotation are −an−1,−an−2, . . . ,−a0. Suppose that for each i, 0 ≤ i ≤ n−1, the
differences ai − ai−1 are coprime with n (the indices are always taken modulo n).

Now consider the lift of M with voltages over the group Zn. In the lift we have
vertex sets U = {u0, u1, . . . , un−1} and V = {v0, v1, . . . , vn−1}, and as all ai − ai−1

are coprime with n, each face (2-gon) of M is lifted to a 2n-gon. Hence, we get
an embedding of the complete bipartite graph Kn,n in an orientable surface in
which every face is bounded by a Hamiltonian cycle. We denote this embedding
by B(u, v;α), where α is the permutation (a0, a1, . . . , an−1). Now place into each
of the n faces of B(u, v;α) a vertex and join it to all the vertices lying on the
boundary of the face, to create a triangular embedding of the complete tripartite
graph Kn,n,n in an orientable surface. In what follows, we denote this embedding
by T (u, v;α). We remark that T (u, v;α) has 3n vertices, 3n2 edges and 2n2 faces,
and so Euler’s formula gives the genus of this embedding as (n− 1)(n− 2)/2.

aa0 a1 a2 an−2 an−1

M :

u

v

Figure 1

By the construction, T (u, v;α) is an orientable triangulation. It is also face
2-colourable. To show this, let W = {w0, w1, . . . , wn−1} be the set of vertices of
T (u, v;α) disjoint from U and V . Then, reading clockwise, some of the boundary
cycles of triangles are uavbwc, for suitable a, b and c, while the others are uawcvb. As
each edge of the embedding is incident to one triangle of each form, the embedding
is face 2-colourable.

Now choose one colour class of a T (u, v;α). Then for each pair of vertices ui ∈ U
and vj ∈ V there is a unique wk ∈ W such that the vertices ui, vj and wk form
a triangle in the colour class. Hence, each colour class forms a transversal design,
TD(3, n). Recall that a TD(3, n) can be represented by a Latin square in such a
way that for every triple ui, vj and wk in the design we put the number k into the
i-th row and j-th column of an n×n square table. As each value wk appears in each
row ui exactly once, and analogously it appears exactly once in each column vj, the
table is a Latin square. Thus, face 2-colourable embeddings of Kn,n,n correspond
to biembeddings of Latin squares.

Suppose that wi is placed into that face of B(u, v;α), which is obtained by lifting
the 2-gon with voltages ai and −ai−1, 0 ≤ i ≤ n−1. Then in one colour class of
T (u, v;α) we have triangles ujvj+a0w0, ujvj+a1w1, . . . , ujvj+an−1wn−1, where 0 ≤
j ≤ n−1, and in the other class we have vjuj−an−1w0, vjuj−a0w1, . . . , vjuj−an−2wn−1.
Hence, each of these two Latin squares has constant diagonals running from “top
left” to “bottom right”, so that both these squares are cyclic. We prove here:
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Theorem 1. If n is prime then there are at least n!
6n2(n−1)

nonisomorphic embed-

dings T (u, v;α) of the complete tripartite graph Kn,n,n.

Stirling’s approximation gives n! = en ln n−n(1+o(1)). Thus n!
6n2(n−1)

= en ln n−n(1+o(1)).

We extend Theorem 1 as follows:

Theorem 2. Let k be a constant, and let p be a prime number. Moreover, let n =
kp. Then as p→∞ there are at least ep ln p−p(1+ln k+o(1)) nonisomorphic embeddings
T (u, v;α) of the complete tripartite graph Kn,n,n.

A special case is the embedding T (u, v;α) with α = (0, 1, . . . , n−1), and with
the vertices W = {w0, w1, . . . , wn−1} placed into the faces of B(u, v;α) as described
above. Then one colour class of triangles of T (u, v;α) contains triangles ujvj+kwk,
0 ≤ j, k ≤ n−1, while the other one contains triangles vjuj−k+1wk. Thus, the
corresponding Latin squares are


0 1 2 . . . n− 1

n− 1 0 1 . . . n− 2
n− 2 n− 1 0 . . . n− 3

...
...

...
. . .

...
1 2 3 . . . 0

 and


1 2 3 . . . 0
0 1 2 . . . n− 1

n− 1 0 1 . . . n− 2
...

...
...

. . .
...

2 3 4 . . . 1



Observe that permuting the rows of both squares by the same permutation cor-
responds to relabelling the vertices u0, u1, . . . , un−1. Applying the permutation
(0, 1, 2, 3, . . . , n−1) → (1, 0, n−1, n−2, . . . , 2) to rows of these squares we get the
squares


n− 1 0 1 . . . n− 2

0 1 2 . . . n− 1
1 2 3 . . . 0
...

...
...

. . .
...

n− 2 n− 1 0 . . . n− 3

 and


0 1 2 . . . n− 1
1 2 3 . . . 0
2 3 4 . . . 1
...

...
...

. . .
...

n− 1 0 1 . . . n− 2



Triples uivjwk of the first table satisfy k ≡ i+ j−1 (mod n), while the triples of
the other one satisfy k ≡ i + j (mod n). In [4] it is proved that the biembedding
of these squares is regular, so that T (u, v;α) with α = (0, 1, . . . , n−1) is a regular
embedding as well. Recall here that an embedding M is regular if and only if for
every two triples (z1, e1, f1) and (z2, e2, f2), where ei is an edge incident to vertex
zi and face fi, 1 ≤ i ≤ 2, there exists an automorphism of M which maps z1 to z2,
e1 to e2, and f1 to f2 (hence, we require also the automorphisms which reverse the
global orientation of the surface). Based on these facts, we prove:

Theorem 3. There is a unique regular triangular embedding of a complete tripartite
graph Kn,n,n in an orientable surface.

Of course, by “unique” we mean “unique up to isomorphism”.
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3. Proofs

Consider the question: “Under which conditions are the embeddings T (u, v;α)
and T (u, v; β) isomorphic?” We address this question by examining possible iso-
morphisms of B(u, v;α) and B(u, v; β). Obviously, if B(u, v;α) is isomorphic to
B(u, v; β), then T (u, v;α) is isomorphic to T (u, v; β). Let α = (a0, a1, . . . , an−1).

Clearly, if β = (ac+0, ac+1, . . . , ac+(n−1)), i.e., if β is obtained by rotating α,
then the corresponding voltage embeddings (of dipoles) in the sphere are identical.
Hence, in this case the lifted embeddings are not only isomorphic, they are identical.

Now suppose that β = (c+a0, c+a1, . . . , c+an−1), i.e., β is obtained by adding a
constant c to every voltage of α, which we denote by β = c+ α. Then a mapping
µ, such that µ(ui) = ui and µ(vi) = vc+i, 0 ≤ i ≤ n−1, is an isomorphism of
B(u, v;α) onto B(u, v; β).

Next, suppose that β = (ca0, ca1, . . . , can−1), i.e., β is obtained by multiplying
the voltages of α by a constant c coprime with n, which we denote by β = cα.
Then a mapping µ, such that µ(ui) = uci and µ(vi) = vci, 0 ≤ i ≤ n−1, is an
isomorphism of B(u, v;α) onto B(u, v; β).

Finally, suppose that β = (an−1, an−2, . . . , a0), i.e., β is obtained by reversing
the permutation α, which we denote by β = α−1. Then B(u, v; β) is isomorphic to
B(u, v;−β), where −β = (−1)β = (−an−1,−an−2, . . . ,−a0), so that it is enough
to find an isomorphism µ mapping B(u, v;α) onto B(u, v;−β). But this can be
done by µ(ui) = vi and µ(vi) = ui, 0 ≤ i ≤ n−1.

We say that two permutations α and β are equivalent, if β can be obtained from
α by a sequence of operations consisting of rotating, adding, multiplying and re-
versing. For permutations of n elements, denote by ne the number of equivalence
classes. It is shown below that there are at least dne

3
e nonisomorphic embeddings

T (u, v;α) of Kn,n,n. The numbers ne for small n, 7 ≤ n ≤ 16, are presented in
Table 1 (we remark that ne = 1 for n = 2, 3, 4, 6, and ne = 2 for n = 5). All these
numbers were obtained by computer.

n 7 8 9 10 11 12 13 14 15 16

ne 13 7 39 9 16,687 15 1,537,182 2,597 88,782 796,291

Table 1

As described above, if two permutations are equivalent, then the corresponding
embeddings are isomorphic. In a sense we can reverse this statement:

Lemma 4. If B(u, v;α) and B(x, y; β) are isomorphic embeddings then α and β
are equivalent permutations.

Proof. First suppose that B(u, v;α) and B(x, y; β) are isomorphic embeddings with
isomorphism µ sending {U} onto {X} and {V } onto {Y }.

Assume that µ(u0) = x−kr for some −kr ∈ Zn. In B(x, y; β) consider a mapping
ν such that ν(xi) = xkr+i and ν(yi) = ykr+i, 0 ≤ i ≤ n−1. Then ν is an automor-
phism of B(x, y; β) which maps x−kr onto x0. Hence, composing µ with ν we get
an isomorphism µr mapping B(u, v;α) onto B(x, y; β), such that µr(u0) = x0.

Now assume that µr(v0) = y−ka . Then B(x, y; β) is isomorphic to B(x, y; ka +
β), and composing µr with this isomorphism we get an isomorphism µa mapping
B(u, v;α) onto B(x, y; ka + β), such that µa(u0) = x0 and µa(v0) = y0.
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Further, α = (. . . ,−d, 0, . . . ) for some d coprime with n. Assume that µa(ud) =
xd∗ . Observe that the 2-gon of the voltage graph with vertices u and v and volt-
ages 0 and −d is lifted to a 2n-gon with boundary cycle u0, v0, ud, vd, . . . , u−d, v−d

in B(u, v;α). As µa induces an isomorphism of B(u, v;α) onto B(x, y; ka + β), the
image of this face is again a face and its boundary cycle is x0, y0, xd∗ , yq1 , xq2 , . . . .
However, as all the faces of B(x, y; ka + β) are obtained by lifts of 2-gons of a
voltage graph, we have ka + β = (. . . ,−d∗, 0, . . . ), where d∗ is coprime with n.
Thus, there is a multiplier km such that kmd

∗ = d. Now B(x, y; ka + β) is iso-
morphic to B(x, y; km(ka + β)), and composing µa with this isomorphism gives
a new isomorphism µm mapping B(u, v;α) onto B(x, y; βm), βm = km(ka + β),
in which µm(u0) = x0, µm(v0) = y0, and µm(ud) = xd. Moreover, the face
f : u0, v0, ud, vd, . . . , u−d, v−d is mapped onto the face µm(f) : x0, y0, xd, yd, . . . , x−d,
y−d, so that µm(ui) = xi and µm(vi) = yi. Observe that all vertices of the embed-
ded complete bipartite graphs appear on these two faces. It follows that α = βm,
and, as βm is equivalent to β, so is α.

Now suppose that µ(U) = Y and µ(V ) = X. As B(x, y; β) is identical with
B(y, x;−β−1), the mapping µ takes B(u, v;α) onto B(y, x;−β−1). Obviously, this
reduces the case to the previous one. �

Observe that T (u, v;α) and T (x, y; β) are isomorphic with an isomorphism send-
ing {U, V } onto {X, Y } if and only if B(u, v;α) and B(x, y; β) are isomorphic and
therefore α and β are equivalent.

Proof of Theorem 1. Since n is a prime number, any permutation α of {0, 1, . . . ,
n−1} gives an embedding T (u, v;α) of a complete tripartite graph. Equivalent
permutations to α are obtained by taking either α or α−1, applying one of n pos-
sible rotations, one of n possible additions of a constant, and one of n−1 possible
multiplications by a non-zero constant. Hence the number of permutations equiv-
alent to α is at most 2n2(n−1). Thus, by Lemma 4, there are at most 2n2(n−1)
automorphisms of T (u, v;α) that send {U, V } to {U, V }.

Suppose that k is the number of distinct automorphisms of T (u, v;α) that send
{U, V } to {U,W}, and denote these automorphisms by φi, i = 1, 2, . . . , k. Then,
for each i = 1, 2, . . . , k, the mapping φ−1

i φ1 is an automorphism of T (u, v;α) that
sends {U, V } to {U, V }. Consequently k ≤ 2n2(n−1).

Similarly, the number of distinct automorphisms of T (u, v;α) that send {U, V } to
{V,W} is at most 2n2(n−1). Thus the total number of automorphisms of T (u, v;α)
is at most 6n2(n−1). Hence, there are at least n!

6n2(n−1)
nonisomorphic embeddings

T (u, v;α). �

We remark that the lower bound d n!
2n2(n−1)

e seems to be a good estimate of ne,

provided that n is a prime number. In Table 2 we compare these numbers for
n = 5, 7, 11 and 13.

n 5 7 11 13

ne 2 13 16,687 1,537,182

d n!
2n2(n−1)

e 1 9 16,495 1,535,262

Table 2
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Proof of Theorem 2. In view of Theorem 1, we may assume that k ≥ 2. Let n = kp
where p > 3k + 2 and is a prime number. It is not easy to determine the number
of permutations α = (a0, a1, . . . , an−1), such that ai − ai−1 is always coprime with
n. Therefore we consider only special permutations of this form.

Let q = (k−1)p. Further, let A be the set of all permutations α = (a0, a1, . . . ,
an−1), such that ai = i whenever i ≤ q; aj ≡ j (mod k) whenever q+1 ≤ j ≤ n−1;
and aq+1 = q+ 1 + k, an−1 = n− 1− 2k. These choices for aq+1 and an−1 are valid
because p > 3k + 2. Also note that 1 < k + 1 = aq+1 − aq < n− an−1 = 2k + 1.

Consider any α ∈ A, α = (a0, a1, . . . , an−1). For every i, 0 ≤ i ≤ n−1, we have
ai − ai−1 ≡ 1 (mod k). Here and elsewhere a−1 is interpreted as an−1. Moreover,
ai − ai−1 ≡ 1 (mod p), 1 ≤ i ≤ q; |ai − ai−1| < p, q+2 ≤ i ≤ n−1; aq+1 − aq < p
and a0 − an−1 ≡ 2k + 1 6≡ 0 (mod p). Hence ai − ai−1 6≡ 0 (mod p), 0 ≤ i ≤ n−1.
Thus, ai−ai−1 is coprime with n for every i, 0 ≤ i ≤ n−1, and hence, every α ∈ A
is a permutation such that T (u, v;α) is a triangular embedding of Kn,n,n.

Now we show that there are no equivalent permutations in A. Let α ∈ A,
α = (a0, a1, . . . , an−1). Then a1 − a0 = a2 − a1 = · · · = aq − aq−1 = 1, and q ≥ n/2.
We also have a0 − an−1 ≡ n− an−1 (mod n) and n− an−1 > aq+1 − aq > 1, so that
a0 − an−1 and aq+1 − aq are distinct and neither are congruent to 1 modulo n.

Any finite sequence of the operations multiplication, reversal, rotation and addi-
tion applied to α may be reduced to a sequence of at most four operations, one of
each type, in that order. To fix α by such a sequence, multiplication must be either
by 1 with no subsequent reversal, or by −1 followed by a reversal; this is because
any subsequent rotation and addition will not affect the differences ai − ai−1. In
the former case the choices of a0, a1, . . . , an−1 ensure that the rotation and addition
operations cannot fix α unless they reduce to the identity mapping. In the latter
case, the rotation must be through n−q−1 places followed by addition of q in order
to obtain a permutation β = (b0, b1, . . . , bn−1) where bi = i, 0 ≤ i ≤ q. This gives
bq+1 = q + 2k + 1 and bn−1 = n − k − 1. Hence β /∈ A, so that A contains no
permutations equivalent to α, apart from α itself. In fact, α is lexicographically
the first permutation amongst all the permutations equivalent to α.

In each residue class modulo k there are either bp−1
k
c or dp−1

k
e numbers from

q+1 to n−1. An immediate consequence is that |A| ≤ (dp−1
k
e!)k and, after fixing

aq+1 and an−1, we also have |A| ≥ ((bp−1
k
c − 2)!)k. By again applying Stirling’s

approximation, these give |A|
3

= ep log p−p(1+ln k+o(1)) as p→∞. �

Proof of Theorem 3. Let M be a regular face 2-colourable triangular embedding
of a complete tripartite graph Kn,n,n. Then deleting independent vertices (and the
edges incident with them) of one partite, we get from M a regular embedding M ′

of the complete bipartite graph Kn,n in an orientable surface. The embedding M ′

has n faces, each of which contains all 2n vertices of the graph. Let f0 be one
of these faces. Denote the vertices of the boundary cycle of f0 consecutively (say
anti-clockwise) by

u0, v1, u1, v2, . . . , un−1, v0.

In what follows we show that M ′ = B(u, v;α) for some permutation α.
Consider the clockwise rotation around u0. In this rotation we have a sequence

. . . , v0, v1, vd+1, . . . for some d. There is an automorphism ψk mapping (u0, u0v1, f0)
onto (uk, ukvk+1, f0), 0 ≤ k ≤ n−1. By considering the boundary of f0, we find
that ψk(ui) = uk+i and ψk(vi) = vk+i. Hence in the clockwise rotation around
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uk we have . . . , vk, vk+1, vk+d+1, . . . . There is also an automorphism χl mapping
(u0, u0v1, f0) onto (vl, vlul−1, f0), 0 ≤ l ≤ n−1. By considering the boundary of
f0, we find that χl(ui) = vl−i and χl(vi) = ul−i. Hence in the clockwise rotation
around vl we have . . . , ul−(d+1), ul−1, ul, . . . . It follows that there is a face f1 with
boundary cycle (reading anti-clockwise)

v1, u0, vd+1, ud, v2d+1, u2d, . . . , u−d.

Note that this implies that d is coprime with n.
There is an automorphism θ mapping (u0, u0v1, f0) onto (u0, u0vd+1, f1). By con-

sidering the boundaries of f0 and f1 we find that θ(ui) = udi and θ(vi) = vdi+1.
Then by applying θj for j = 1, 2, . . . , it follows that the clockwise rotation around
u0 has the form . . . , v0, v1, vd+1, vd2+d+1, . . . . Applying ψk to this, we deduce that
the clockwise rotation around uk has the form . . . , vk, vk+1, vk+d+1, vk+d2+d+1, . . . ,
and applying χl we see that the clockwise rotation around vl has the form
. . . , ul−(d2+d+1), ul−(d+1), ul−1, ul, . . . . Note that these require the n numbers
0, 1, d+1, d2+d+1, . . . , dn−2+dn−3+ . . .+d+1, to be distinct modulo n, and that
dn−1+dn−2+ . . .+d+1 ≡ 0 (mod n). It follows that M ′ = B(u, v;α) where α =
(0, 1, d+1, . . . , dn−2+dn−3+ . . .+d+1).

Now we show that d = 1. Denote the faces of M ′ around u0 by f0, f1, . . . , fn−1

where fj = θj(f0), place into each face fi a vertex wi and join it to all the vertices
lying on the boundary of fi, to obtain, up to isomorphism, the original regular
embedding M = T (u, v;α). Further, denote Dk = dk+dk−1+ . . .+d+1, 0 ≤ k ≤
n−1. Then the rotations around uk, vk and wk are as follows:

uk : vk+Dn−1=vk, w0, vk+D0 , w1, vk+D1 , w2, . . . , vk+Dn−2 , wn−1

vk : uk−Dn−1=uk, wn−1, uk−Dn−2 , wn−2, . . . , w2, uk−D1 , w1, uk−D0 , w0

wk : u0, v−dk+Dk
, u−dk , v−2dk+Dk

, u−2dk , . . . , udk , vDk

Observe that the rotation around wk is opposite to the boundary of fk in M ′.
The triples (u0, v1, w0) and (w0, u−1, v0) are triangles of the map M . As M

is regular, there is an automorphism ϕ of M mapping (u0, u0v1, u0v1w0) onto
(w0, w0u−1, w0u−1v0). We determine ϕ(vd+1).

Recall that the second arc following u0v1 in the rotation around u0 is u0vd+1. As
the second arc following w0u−1 = w0u−d0 in the rotation around w0 is w0u−2d0 =
w0u−2, we have ϕ(vd+1) = u−2.

In the rotation around vd+1 = vD1 we have . . . , ud+1−D1=u0, w1, ud, w0, . . . so
that in the rotation around ϕ(vd+1) = u−2 we must have . . . , ϕ(u0), ϕ(w1), ϕ(ud),
ϕ(w0), . . . . As ϕ(u0) = w0 and ϕ(w0) = v0, in the rotation around u−2 we have
. . . , w0, va, wb, v0, . . . for some a and b. But in the rotation around u−2 we have
. . . , w0, v−2+D0 , w1, v−2+D1 , . . . , so that v0 = v−2+D1 , and hence 0 = −2 + d + 1.
Thus, d = 1 and M = T (u, v;α), where α = (0, 1, . . . , n−1). �
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Sem. Univ. Hamburg 25 (1961), 105-127.
[8] S. Stahl and A. White, Genus embeddings for some complete tripartite graphs, Discrete Math.

9 (1976), 279-296.
[9] J. W. T. Youngs, The mystery of the Heawood conjecture, Graph Theory and its applications,

B. Harris Ed., Academic Press, 1970, pp. 17-50.
[10] A. T. White, Block designs and graph imbeddings, J. Combin. Theory Ser. B 25 (1978),

166-183.

9


