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Abstract

Face two-colourable triangular embeddings of complete graphs
Kn correspond to biembeddings of Steiner triple systems. Such em-
beddings exist only if n is congruent to 1 or 3 modulo 6. In this
paper we present the number of these embeddings for n = 13.

1 Introduction and results

In 1968 Ringel and Youngs completed the proof of the Heawood Map Colour
Theorem. An account can be found in [4]. In particular they proved that
the complete graph Kn triangulates a surface if and only if n ≡ 0, 1, 3 or
4 (mod 6). For the embedding to be face two-colourable it is necessary for
the vertex degrees to be even and, consequently, for n to be odd. Hence,
face two-colourable embeddings may exist only if n ≡ 1 or 3 (mod 6).
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Consideration of the Euler characteristic shows that such embeddings can
be orientable only if n ≡ 3 or 7 (mod 12).

In the case when n ≡ 3 (mod 12) the orientable triangulations of Kn

found in [4] are indeed face two-colourable. Youngs [5] produces orientable
triangulations of Kn by means of current assignments on ladder graphs.
Amongst the variety of ladder graphs used in [5] it is possible to find, for
each n ≡ 7 (mod 12), one which is bipartite (c.f. especially pages 39-44 of
[5]), and this ensures that the corresponding triangular embedding is face
two-colourable. Thus it is known that there are also face two-colourable
orientable triangulations of Kn for all n ≡ 7 (mod 12).

Similar methods given by Ringel in [4] show that there is a face two-
colourable triangulation of Kn in a nonorientable surface for every n ≡
3 (mod 6) with n ≥ 9. However, for some values of n ≡ 1 (mod 6),
the situation is unclear. Although such embeddings seem easy to find for
particular values of n, indeed they appear to be very much more plentiful
than orientable embeddings, the general result seems elusive and some parts
of the case n ≡ 31 (mod 36) are still apparently open.

There is evidence that the number of nonisomorphic face two-colourable
triangulations of Kn grows rapidly with n. In [1] it is proved that the
number of nonisomorphic face two-colourable triangulations of Kn in an
orientable surface is at least 2n2/54−O(n) for n ≡ 7 or 19 (mod 36), and is at
least 22n2/81−O(n) for n ≡ 19 or 55 (mod 108). However, it seems that until
the present paper, no face two-colourable embedding of K13 was known. In
this paper we present the number of these triangulations (obtained by an
exhaustive computer search) and discuss some of their features.

Our interest in face two-colourability stems from the observation that
every edge of the embedded graph is part of the boundary of a face of each
colour. Hence, each colour class of a face two-colourable triangulation of
Kn forms a Steiner triple system of order n, STS(n). For this reason, face
two-colourable embeddings of Kn correspond to biembeddings of STS(n)s.
We here recall that an STS(n) may be formally defined as an ordered pair
(V,B), where V is an n-element set (the points) and B is a set of 3-element
subsets of V (the triples), such that every 2-element subset of V appears in
precisely one triple. A necessary and sufficient condition for the existence
of an STS(n) is that n ≡ 1 or 3 (mod 6); such values of n are called
admissible. We say that two STS(n)s are biembedded in a surface if there
is a face two-colourable triangulation of Kn in which the face sets forming
the two colour classes give isomorphic copies of the two systems.

There is a unique and trivial STS(3), a unique STS(7) (the Fano plane),
and a unique STS(9) (the affine plane of order 3). There are two STS(13)s,
one of which is cyclic (i.e. has an automorphism of order 13), and which we
denote by C. This system has full automorphism group of order 39. The
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other STS(13) is non-cyclic, and it may be obtained from C by a so-called
“Pasch switch”. We denote the non-cyclic system by N ; its automorphism
group has order 6. When referring to the number of biembeddings, we
mean the number of nonisomorphic biembeddings of the specified type.
In references to the number of automorphisms of embeddings, we include
automorphisms that exchange the colour classes or (in the orientable case)
reverse the orientation.

The case n = 3 is trivial, there is a unique biembedding, this is ori-
entable and has the automorphism group S3 of order 6. The graph K7 is
not embeddable in the Klein bottle, see [4], and, as proved by Negami in
[3], it has a unique embedding on the torus. This embedding is triangu-
lar, face two-colourable and regular, with the affine general linear group
AGL(1, 7) of order 42 as its automorphism group. A realization is ob-
tained by taking one system with triples 013, 124, 235, 346, 450, 561, 602
and the other obtained from this by applying the permutation z → 3z
(arithmetic in GF (7)). In this realization the automorphism group is
〈z → az + b, a, b ∈ GF (7), a 6= 0〉. The automorphisms of even order
exchange the colour classes but preserve the orientation. Each colour class
of the embedding forms a copy of the Fano plane.

There is a unique face two-colourable triangulation of K9. This embed-
ding is a vertex-transitive map and its group of automorphisms is C3 × S3

of order 18. A realization is obtained by taking one system with triples
012, 345, 678, 036, 147, 258, 048, 156, 237, 057, 138, 246 and the other obtained
from this by applying the permutation (0 1)(2 6)(4 7)(3)(5)(8). In this re-
alization, the permutation just given together with (0 6 7)(1 8 4 3 2 5)
generate the automorphism group. The automorphisms of even order ex-
change the colour classes. Each colour class of the embedding forms a copy
of the affine plane of order 3.

Regarding the STS(13)s, we may summarize our results as follows.
There are 615 nonisomorphic biembeddings of C with C of which 36 have an
automorphism group of order 2, and four have an automorphism group of
order 3; the rest have only the trivial automorphism. There are 8 539 non-
isomorphic biembeddings of C with N of which ten have an automorphism
group of order 3, and the rest have only the trivial automorphism. Finally,
there are 29 454 nonisomorphic biembeddings of N with N , of which 238
have an automorphism group of order 2, and the rest have only the trivial
automorphism. Altogether we therefore obtain a total of 38 608 face two-
colourable triangulations of K13. In each case an automorphism of order
2 exchanges the colour classes and fixes exactly 3 vertices of K13, and an
automorphism of order 3 fixes a single vertex of K13.

We remark that the embeddings given in [4] and [5] are produced by
means of covering constructions, and these constructions produce large au-
tomorphism groups. It may be that this is the reason why the face two-
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colourable triangulations of K13 were not discovered earlier, although there
is a large number of them.

In the next section we discuss some aspects of the embeddings of K13,
and we describe our computer programs. For further background and ter-
minology regarding graph embeddings, we refer the reader to the books by
Ringel [4] and by Gross and Tucker [2]. We shall denote by W (for white)
and B (for black) the sets of triples forming the STS(n)s which appear as
the colour classes of a face two-colourable triangulation of Kn.

2 Computational background

To obtain and verify our results we used two different computer programs,
so that all the embeddings were generated in two different ways. By record-
ing the numbers of realizations and isomorphism classes, we were also able
to use the orbit-stabilizer theorem as an additional check on the computa-
tions.

In the first program we choose two STS(n)s, say W and B. The system
W is fixed, and we permute the points of B using permutations p, q, etc.,
so that the sets of triangles (W,pB) represent an embedding. From W
and pB we construct tables TW and TpB , in which the i-th row and j-th
column contains the value k, for which (i, j, k) is a triple of the system.
We write k = TW (i, j) or k = TpB(i, j), respectively. The tables TW and
TpB are used for fast construction of the rotations of the embedding. If the
rotations around all the vertices are cycles of length n − 1, then (W,pB)
represents a face two-colourable embedding of Kn in a surface. (We remark
that in cases when one of the rotations contains a cycle of shorter length
then (W,pB) represents an embedding in a pseudosurface.) Finally, we
check each embedding as it arises for isomorphism with the current list of
embeddings. Thus, (W,pB) is added to our list only if it is nonisomorphic
to any of the embeddings constructed earlier.

The strategy just described is straightforward. However, it has to be
improved in two details to get all the embeddings within a reasonable
timescale.

The first improvement consists in rejecting all those permutations p, for
which W and pB have a common triangle; if TW (i, j) = TpB(i, j) for some i
and j, then there is no need to construct the rotations, because W and pB
cannot determine an embedding. We remark that in the case n = 13, out
of 13! = 6 227 020 800 permutations p only 10.8% give a system pB which
has all the triangles different from those of W . Moreover, if TW (i, j) =
TpB(i, j) = k, then we overskip all the permutations p which do not change
the triple (i, j, k). The permutations were generated lexicographically and
this overskipping reduces to 34.6% the proportion of permutations which

4



need to be considered.
The second improvement regards the isomorphism testing. Although

the isomorphism problem is polynomial-time for embeddings, comparison
of one embedding with 29 454 others (as would be required in the case W =
B = N) is potentially very time-consuming. The testing can be accelerated
by computing a set of invariants for each embedding. Obviously, having a
subroutine that checks isomorphisms, it would be natural to count the
number of automorphisms. Unfortunately, almost all the embeddings have
the trivial group of automorphisms. Therefore we used different invariants.

Consider a fixed embedding, and denote by ρv a rotation around a
vertex v. Since ρv is a cyclic permutation, for each two neighbours u1 and
u3 of v there are n1 and n2 such that u3 = ρn1

v (u1) and u3 = ρ−n2
v (u1)

(where 1 ≤ n1, n2 ≤ n−2 and n1 + n2 = n − 1, the degree of v). Denote
by d(v;u1, u3) the minimum of n1 and n2. Now if d(v;u1, u2) = 1 and
d(v;u2, u3) = 1, u1 6= u3, then d(u2;u1, u3) = 2. However if d(v;u1, u2) = 2
and d(v;u2, u3) = 2, u1 6= u3, then d(u2;u1, u3) can be any number from 1
to n−1

2 . Let Iv be the sum of n− 1 numbers given by

Iv =
∑

vu2∈E(G)

(d(u2;u1, u3) : where d(v;u1, u2) = d(v;u2, u3) = 2 and u1 6= u3).

For n = 13, {Iv : v ∈ V (Kn)} is a satisfactory set of invariants. (For
instance, in the case W = B = N it splits the 29 454 embeddings into
28 037 classes.)

To reconcile the number of realizations obtained by the program with
the number of isomorphism classes, suppose that (W,pB) is an embedding.
We determine the number of embeddings (W, qB) which are isomorphic to
(W,pB).

Assume first that W is not isomorphic to B. If m : (W,pB) → (W, qB)
is an isomorphism, then m is an automorphism of W and mpB = qB, so
that q−1mp is an automorphism of B. Thus there are |Aut(W )| · |Aut(B)|
possibilities for choosing the pair (m, q). However, if |Aut(W,pB)| > 1,
some of these (m, q) pairs will provide automorphisms. Hence, the total
number of embeddings (W, qB) which are isomorphic to (W,pB) is

|Aut(W )| · |Aut(B)|
|Aut(W,pB)|

.

Consider next the situation when W and B are isomorphic, say B = rW .
Then we have also the case when m maps W to qB (= qrW ) and pB
(= prW ) is mapped to W . In such a case, mW = qrW and mprW = W .
Thus, mpr and m−1qr are automorphisms of W , and counting the number
of (m, q) pairs gives |Aut(W )| · |Aut(W )| possibilities. Again, some of these
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pairs may provide automorphisms, so that the total number of embeddings
(W, qB) which are isomorphic to (W,pB) is

2 · |Aut(W )|2

|Aut(W,pB)|
.

These calculations facilitate a partial check on our results by comparing
the results of the calculations with the numbers of realizations obtained by
the program and given below.

For n = 7 the unique STS(7) has an automorphism group of order
168 and there is a unique biembedding E with |Aut(E)| = 42. This gives
2 · 1682/42 = 1 344 realizations.

For n = 9 the unique STS(9) has an automorphism group of order
432 and there is a unique biembedding E with |Aut(E)| = 18. This gives
2 · 4322/18 = 20 736 realizations.

For n = 13 we have |Aut(C)| = 39 and |Aut(N)| = 6. There are three
subcases.

(i) If W = B = C, the number of realizations is

2 · 392 · (575 + 36/2 + 4/3) = 1 807 962.

(ii) If W = C and B = N , the number of realizations is

39 · 6 · (8 529 + 10/3) = 1 996 566.

(iii) If W = B = N , the number of realizations is

2 · 62 · (29 216 + 238/2) = 2 112 120.

All these numbers were confirmed by the program. It is interesting to
note that in all three subcases the numbers of realizations are close to each
other.

The second program was based on the observation that if (W,pB) and
(W, qB) are isomorphic embeddings, then pB and qB can be identical (and
not only isomorphic) systems. In fact, for every embedding (W,pB) there
are |Aut(B)| permutations q, such that the sets of triangles pB and qB are
identical. In this second program we fix the white system W and its table
TW , and we construct the rows of TB so that (W,B) is an embedding. This
approach is a bit more tedious and it gives no information about the black
system B (for example in the n = 13 case, whether it is cyclic or not), but
it constructs only 1/39 of embeddings if B = C and 1/6 of them if B = N .
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We checked that the embeddings produced by this second program are
the same as (i.e. isomorphic to) those produced by the first program. Un-
fortunately, generating the table TB is so complicated, that the second
program is only slightly faster than the first one. In fact, the total time for
constructing the embeddings by the first program is less, as we can utilize
the automorphism groups of C and N , rendering it unnecessary to consider
all 13! permutations.

Acknowledgement. Part of this work was done while the third author
was visiting the Department of Pure Mathematics of The Open University
at Milton Keynes, U.K.; he thanks the Department for hospitality and
financial support. He also acknowledges partial support for this research
by the VEGA grant No. 1/6293/99.

References

[1] C. P. Bonnington, M. J. Grannell, T. S. Griggs and J. Širáň, Expo-
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