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Abstract

We prove that there is a Steiner triple system 7 such that every
simple cubic graph can have its edges coloured by points of 7 in such
a way that for each vertex the colours of the three incident edges
form a triple in 7. This result complements the result of Holroyd and
Skoviera that every bridgeless cubic graph admits a similar colouring
by any Steiner triple system of order greater than 3. The Steiner triple
system employed in our proof has order 381 and is probably not the
smallest possible.



1 Introduction

It is well known that the edges of each cubic graph can be coloured by three
or by four colours in such a way that adjacent edges receive distinct colours.
An edge-colouring of a cubic graph with three colours, known as a Tait
colouring, has the property that the colours of two adjacent edges determine
the colour of the third edge incident with their common vertex. One way of
viewing this is to regard the colours as the points of a Steiner triple system
and the set of colours at each vertex as a triple of the Steiner triple system.
In a Tait colouring all the vertices have the same triple of colours, but we
may consider more general edge-colourings of cubic graphs using arbitrary
Steiner triple systems where the edges at different vertices are allowed to be
coloured by different triples. Such colourings are the main object of study in
the present paper.

Recall that a Steiner triple system S = (X, B) of order n is a collection
B of three-element subsets (called triples) of a set X of n points such that
each pair of points is together present in exactly one triple. A necessary and
sufficient condition for the existence of such a system is that n = 1 or 3 (mod
6), and such values of n are called admissible.

Now we can formally define an S-colouring of a cubic graph GG, where &
is a Steiner triple system, as a colouring of the edges of G by points of §
such that the colours of any three edges meeting at a vertex form a triple of
S. If G admits such a colouring, then we say that it is S-colourable.

The study of this sort of edge-colourings has been proposed by Archdea-
con [A]. The general question can be stated as follows: Which cubic graphs
can be coloured by which Steiner triple systems?

In [F], Fu identified two classes of cubic graphs which can be coloured by
using the Steiner triple system of order 7, the point-line design of the Fano
plane PG(2,2). The first of these consists of all bridgeless cubic graphs of
order at most 189, and the second comprises all such graphs of genus at most
24. Recently, Holroyd and Skoviera [HS] obtained a substantial improvement
of these results. In particular, they proved the following two theorems.

Theorem A Let G be a bridgeless cubic graph without loops, and let S be a
Steiner triple system of order greater than 3. Then G is S-colourable.

Theorem B Let G be a cubic graph without loops and let S be a projective
Steiner triple system, that is an n-dimensional projective geometry PG(n, 2)



whose triples are the lines of the geometry. Then G is S-colourable if and
only if G 1s bridgeless.

Both theorems hold for bridgeless cubic graphs without loops but with
possible multiple edges. However, it is equally natural to deal with Steiner
colourings of graphs which may contain bridges. It is the aim of this paper
to extend the study of Steiner colourings to cubic graphs with bridges.

When dealing with Steiner colourings of cubic graphs with bridges it is
initially convenient to exclude parallel edges because a cubic graph containing
a triangle with one edge doubled cannot be coloured by any Steiner triple
system.

Theorem B shows that there are infinitely many Steiner triple systems
which cannot colour any cubic graphs with bridges. This suggests the ques-
tion of whether there exists at least one Steiner triple system S such that
every simple cubic graph (i.e., one without loops and multiple edges) is
colourable by §. The purpose of this paper is to answer this question in
the affirmative.

Main Theorem There is a Steiner triple system T such that every simple
cubic graph is T -colourable.

To prove this theorem we construct a Steiner triple system 7 on 381
points and show that it can be used to colour every simple cubic graph.
We leave it as an open question whether there exist smaller systems with a
similar property.

As a corollary to the Main Theorem, we characterize those non-simple
cubic graphs which admit no S-colouring for any Steiner triple system S,
and we prove that those which do not admit an S-colouring for some S are,
in fact, 7-colourable.

2 Construction of the Steiner triple system

In this section we construct a Steiner triple system 7 on 381 points such
that every cubic graph is 7-colourable. We use two general constructions to
obtain the system 7.

The first construction is known as a Pasch switch. Let S = (X, B) be a
Steiner triple system. A Pasch configuration in S is a configuration of four
triples from B that cover precisely six points. Up to isomorphism, there is a
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unique configuration of this type and it has the form {{ao, by, co}, {ao, b1, 1},
{a1,bo,c1}, {a1,b1,¢0}}. Given such a configuration, the four triples may be
replaced by the triples {ay,b1,c1}, {a1,bo, o}, {ao, b1, co} and {ag, by, c1} to
produce a new Steiner triple system. The replacement operation is called a
Pasch switch.

The second construction is the tripling construction. Given a Steiner
triple system S on n points, the tripling construction produces a new Steiner
triple system S® on 3n points. The system S® consists of three copies of S,
say S, 8" and §”, its triples being those of each individual copy of S together
with

the six triples of the form {a, ¥, "} for each triple {a,b,c} of S,
all triples of the form {a,a’,a”} for each point a of S,

where o/, V', ¢, ... denote points of &', and a”,b”,c”, ... denote points of S”.

Now we can describe the construction of 7. We start with the 6-dimensional
projective geometry P = PG(6,2) over the field of two elements, which we
view as a Steiner triple system of order 27 — 1 whose triples are the lines of P.
Thus the points of P are the non-zero binary vectors of length 7 with entries
from Z,, and the triples of the system are those triples of vectors whose sum
is the zero vector.

Let us take the following six points of P:

ap=(1,1,0,1,1,0,0), by=(1,0,0,1,0,1,0), ¢o=(0,1,0,0,1,1,0),

a; = (1,1,0,1,1,0,1), b; = (1,0,0,1,0,1,1), ¢ = (0,1,0,0,1,1,1).
The triples {aq, bo, ¢}, {@o, b1, ¢1}, {a1, bo, c1} and {aq, by, ¢o} form a Pasch
configuration in P. So we can perform the Pasch switch on these four triples
to produce a new system Q. The final Steiner triple system 7 is formed by
tripling Q, that is, 7 = Q?; its order is 3(27 — 1) = 381.

Our next aim is to show that every simple cubic graph can be coloured
by 7. The colourings which we will construct only use a part of the system
7. Let us choose the point z = (0,0,0,0,0,0,1) € Q, and let 2’ and 2" be
its copies in @' and Q”, respectively. Denote by Z the trivial Steiner triple
system consisting of a single triple {z, 2/, 2”}. Note that Z C 7. Besides
this triple, we will use only triples within Q and its copies Q' and Q".



3 Proof

We start with a brief outline of the proof. Given a cubic graph we decompose
it into 2-connected blocks and bridges. We distinguish between two types of
2-connected blocks — those containing a subdivision of the complete graph Ky
on four vertices, and those not. The latter ones are graphs known to belong
to the family of so-called series-parallel graphs. As we shall see later, each
series-parallel graph with maximum valency 3 is 3-edge-colourable. Thus it
can be coloured by Z. Since Z C 7, this part of the colouring has the
required property.

Clearly, individual colourings of each series-parallel block will force the
colours of some bridges to be within Z. This leads us to the decision to
colour each bridge by one of the colours z, z’ and z”.

Now we consider a 2-connected block which contains a subdivision of Kj.
We suppress its 2-valent vertices to obtain a cubic graph which, by Theorem
A is colourable by the Fano plane PG(2,2). We therefore choose in Q the set
of all points (z,y, 2,0,0,0,0) where z,y,z € Zs and (x,y, z) # (0,0,0), and
form the triples of vectors whose sum is the zero vector. The resulting config-
uration F in Q is isomorphic to the Fano plane. We colour the cubic graph
in question by F and “subdivide the colouring” into an improper colouring
(i.e., a colouring where some adjacent edges have the same colour) of the orig-
inal block. Then we colour the incident bridges by z and modify the latter
colouring into a proper Q-colouring. This modification will make use of the
subdivision of K, and will influence the other four coordinates of the vectors.
In fact, the first three of them will depend on a selected 3-valent vertex of the
subdivision of K4, while the last coordinate localizes the special point z of Q.

The next part of this section provides several results preparing the main
proof, especially the crucial Lemmas 1 and 2. Throughout the rest of this
section graphs will always be loopless but may have parallel edges unless we
specify that they are simple.

Recall that a graph is series-parallel if it can be constructed from the
complete graph K, by a repeated use of two operations (which have given
name to this family): (1) subdividing an edge, and (2) adding an edge parallel
to an existing edge (i.e., increasing the multiplicity of an existing edge).

It is now part of folklore in graph theory that series-parallel graphs coin-
cide with those having no subdivision of the complete graph K. The latter
property can conveniently be taken as a definition of series-parallel graphs



and the former definition as their characterization.

In order to be precise, let us call a graph series-parallel if it contains
no subdivision of K4. In [D], the following characterization of 2-connected
series-parallel graphs has been established.

Theorem C A 2-connected graph G is series-parallel if and only if it can be
reduced to a loop by a sequence of the following two operations:

S. Replacing a path of length two with interior vertex of valency 2 by a
single edge.

P. Deleting an edge parallel to another edge.

Unfortunately, the operation S can create multiple (i.e., parallel) edges
even when the original graph G was simple. For graphs with maximum
valency 3 this inconvenience can be avoided as follows.

Let G be a simple 2-connected series-parallel graph with maximum va-
lency 3. Clearly, the length of each cycle in G is at least 3. If G contained
only one vertex of valency 3, then it could not be 2-connected. Also, if every
cycle of G contained three or more vertices of valency 3, then it would be
impossible to reduce G to a loop using only operations S and P, because P
could not be applied. Hence GG contains a cycle with exactly two vertices of
valency 3. Let C' be a shortest such cycle. Then the edges which connect
G — C to C are distinct, and contracting C' into a single vertex results in a
2-connected series-parallel graph which is either simple or is a cycle of length
2, that is, a pair of parallel edges. As the resulting graph is smaller than G,
we have derived the following corollary of Theorem C:

Corollary 1 A simple 2-connected series-parallel graph G with maximum
valency at most 3 can be reduced to a cycle of length at least 2 by a repeated
use of the following operation:

SP. Contracting a shortest cycle with exactly two vertices of valency 3 into
a vertex.

Moreover, at each instance, the length of the shortest cycle subject to con-
traction is at least 3.

We proceed to the edge-colouring lemmas.



Lemma 1 A simple 2-connected series-parallel graph with maximum valency
at most 3 is 3-edge-colourable.

Proof. We employ induction on the number of vertices. Let G be a simple
2-connected series-parallel graph with maximum valency at most 3. If G is a
cycle, then it is obviously 3-edge colourable. Otherwise G contains a cycle C
with exactly two vertices of valency 3 such that the contracted graph G/C
is either a simple 2-connected series-parallel graph with valency at most 3,
or a cycle of length 2. In both these cases let © and v be the two 3-valent
vertices on C' and let x and y be the respective edges at u and v which are
not on C. By the induction hypothesis, G/C admits a 3-edge-colouring ¢ in
which = and y necessarily receive distinct colours, say ¢(x) = 1 and ¢(y) = 2.
We now extend the colouring ¢ to a 3-edge-colouring of the whole G. The
vertices u© and v divide C' into two independent u-v-paths P = ejesy... e,
and Q = fifa... fs withr < s. If r = s = 2, then we can set ¢(e;) = 2,
o(e2) = 3, ¢(f1) = 3 and ¢(fy) = 1. Otherwise, if r is odd (possibly r = 1)
we set ¢(e1) = ¢(e,) =3, ¢(f1) = 2, and ¢(f;) = 1; if r is even (and s > 3),
then we set ¢(e1) = 2, o(e,) = 1, and ¢(f1) = ¢(fs) = 3. The rest of the
paths, and hence the whole of G, is easily coloured with three colours. O

Remark. Lemma 1 is false for graphs with parallel edges allowed. For exam-
ple, a triangle with one edge doubled is a series-parallel graph with maximum
valency 3, but has no 3-edge-colouring.

We call a graph almost cubic if all its vertices have valency 3 or 1. For an
almost cubic graph G, let G denote the graph obtained from G by deleting
the vertices of valency 1 and their incident edges.

A colouring of an almost cubic graph by a Steiner triple system S is
any colouring by points of § such that the colours of edges incident with a
common 3-valent vertex form a triple of S.

Lemma 2 Let G be a connected almost cubic graph such that G* is 2-connected
and contains a subdivision of K4. Then G is colourable by Q in such a way
that all the bridges of G receive the colour z.

Proof. Let H be the graph obtained from G by suppressing all 2-valent
vertices. Then H is a 2-connected cubic graph, not necessarily simple.

By Theorem A, H is colourable by the Fano plane. So we can colour H
by F C Q. If H = @, this yields the required Q-colouring of G.
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Assume that H # G. Then G—G* consists of 1-valent vertices w1, ug, . . . , Uy

which are connected to G by pendant edges uqvy, usvs, . . ., unv,. Take any
F-colouring ¢y of H. Since G? arises from H by inserting the vertices
vy, ...,U, into certain edges, the subdivision operation transforms ¢, into

an improper colouring ¢, of G* such that each edge arising by a subdivision
of an edge of H inherits the colour from it. We will further modify this
colouring into a Q-colouring of G.

Since G¥ contains a subdivision of Ky, there is a vertex = and 3-cycles P,
Q and R in G* such that PN QN R = {z}. (Observe that any three distinct
3-cycles in K intersect in exactly one vertex.)

Let us arrange the vertices vy, ..., v, into d = |n/2| pairs; if n is odd we
leave v,, unpaired. For ¢+ = 1,2,...,d we pick any path L; joining the i-th
pair, and for n odd we let Ly be a path joining v, to x.

Now we construct a colouring ¢, of G as follows. Let ¢; : E(G*) — Zy be
the indicator function such that ¢;(e) = 1 if and only if e lies on the path L;.
Note that if n is even, ¢; is identically zero. We colour each pendant edge
UL, . . ., UpVy by 2 = (0,0,0,0,0,0,1), and for e € E(G") we set

pa(e) = d1(e) + (Z C¢(6)> z.

=0

In other words, for each ¢ we increase the colours of the edges on L; by z. If v;
is an end-vertex of L;, then adding z to the colours of edges of L; causes the
edges of G incident with v; to receive different colours, and as ¢, (vu;) = 2,
the edges incident with v; in G are coloured by a triple of Q. Note that if
{a,b,c} is a triple of P, and d € P is different from both a and b, then
{a + d,b+ d,c} is again a triple of P. Hence, if n is even, ¢ is a proper
Q-colouring of GG, while if n is odd, x is the unique vertex of G at which the
colours of incident edges do not form a triple of Q.

So assume that n is odd. Let zp, zq and xr be the edges incident with
the vertex x such that the vertex p lies on QN R, ¢ lies on PN R, and r lies on
PN Q. We now construct a colouring ¢3 of G as follows. Let cp : E(G) — Zs
be the indicator function such that cp(e) = 1 precisely when e lies on the
cycle P; for the other two cycles () and R define ¢ and cp similarly. The
construction of ¢y implies that its values on the edges incident with x have
the form

ng(.fp) = (p17p27p37070707p4)7

9



¢2($Q) = (q17q27q370a 0707(]4)7
ng(.f?") - (7”1,7"2,7’3,0,0,077"4),

here o g 0T i=123,
WHEIC Pi ™G TTi =\ 1 if = 4.

Set

p = (QI+1aQ27Q370707170)>
q = (p1+1ap2+17p370717070>7
r = (0,0,0,1,0,0,0),

and for each edge e of G we define

p3(e) = ¢ga(e) + cp(e)p + cqle)q + crle)r.

Clearly, ¢s3(zp) = (1,1,0,1,1,0,p4), ¢3(xq) = (1,0,0,1,0,1,¢q4), and
¢3(xr) = (0,1,0,0,1,1,74). Observe that at each 3-valent vertex of G — «x,
the colours of the three incident edges all have their fourth, or fifth, or sixth
entry zero. Thus at each 3-valent vertex different from x the colours of ¢3
form a triple of Q. By the definition of ¢5, ps + g4 + 74 = 1, so the edges
incident with x are also coloured by a triple of Q, in fact one of the four
triples of the Pasch configuration which was created in forming Q from P.
Hence, ¢3 is a proper Q-colouring of GG, as required. a

Now we are ready to prove the main result.

Proof of Main Theorem. Let G be a simple cubic graph, and let By,..., B,
be the components obtained from G by removing all bridges. We can assume
that the components B; are labelled in such a way that for each i > 2, there
is exactly one bridge connecting B; to By U ... U B;_;.

Let H; be the graph obtained from B; by adding all bridges of G which
are incident with B;. Clearly, H; is an almost cubic graph. We colour the
graphs Hy,..., H, step by step with the increasing index. If Hf = B, is
a series-parallel graph or a single vertex, then we 3-colour H; by Z. This
is possible by Lemma 1. If B; contains a subdivision K}, then we employ
Lemma 2 to colour H; by a copy of Q.

Assume that the graph H; U...U Hy_1, k > 2, has already been coloured
as indicated above. By the ordering of the graphs B;, exactly one edge of Hy,
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— a bridge — has received its colour w € Z in one of the previous steps. If
Hj. contains a subdivision of Ky, then we colour H; by that copy of Q C T
which contains w. If Hj contains no subdivision of Ky, then we can easily
extend the colouring of the bridge to an Z-colouring of Hy. In both cases,
H, U...U Hy is properly 7-coloured in such a way that the bridges receive
a colour in Z. Therefore we can continue the process until the whole of G is
T -coloured. O

Certain loopless cubic graphs which have parallel edges may also be
coloured by 7. Indeed, it is possible to characterize these precisely by the
following Corollary.

Corollary 2 FEvery loopless cubic graph that does not have, as a subgraph,
a cubic series-parallel graph with a single subdivided edge, is T -colourable.
Furthermore, any cubic graph that does have, as a subgraph, a cubic series-
parallel graph with a single subdivided edge, is not S-colourable for any Steiner
triple system S.

Proof. Take a loopless cubic graph G. If G is simple then, by the Main
Theorem, G is 7-colourable. Otherwise, if G has a triple edge zy, then
this edge and the vertices x,y lie in a disconnected component H and we
put G’ = G\ H. If G has a double edge zy, then define the graph G’ by
deleting from G this double edge and the vertices x,y, and replacing the
remaining two edges incident with x and y, say uxz and vy, by a single edge
uv. The possibility that « = v is not excluded. Clearly, for any Steiner
triple system S, G is S-colourable if and only if G’ is S-colourable. By
repeatedly removing triple and double edges in this fashion, we arrive at a
graph G* without parallel edges such that GG is S-colourable if and only if G*
is S-colourable.

The first part of the Corollary then follows from the Main Theorem, pro-
vided that G* is loopless. But, if G* contains a loop on a vertex v then, by
reversing the above operations, it is easy to see that G must contain, as a
subgraph, a cubic series-parallel graph with a single subdivided edge; indeed
the unique subdivision point is v and the additional edge incident with v
forms a bridge in G. To establish the second part of the Corollary, observe
that a subgraph of G which comprises a cubic series-parallel graph with a
single subdivided edge, reduces to a loop in G*. O
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4 Concluding remarks

Let G be a cubic graph. Define the Steiner chromatic number of G to be the
smallest n for which there exists a Steiner triple system S of order n such that
G admits an S-colouring. With this definition, our main result, combined
with Corollary 2, shows that every loopless cubic graph that does not have,
as a subgraph, a cubic series-parallel graph with a single subdivided edge,
has a finite Steiner chromatic number. Furthermore, Theorem A implies that
a bridgeless cubic graph has Steiner chromatic number 3 or 7 according to
whether or not it is 3-edge-colourable.

For graphs with bridges we have not been able to give such a simple
description of their Steiner chromatic number. Since the only thing which
we now know is just a rough general upper bound 381, we believe that the
Steiner chromatic number is worth further investigation.

Our final observation uses the result of Doyen and Wilson [DW] that a
Steiner triple system of order n may be embedded in a Steiner triple system
of order m for any admissible m > 2n 4+ 1. Consequently, for any admissible
m > 763, there is a Steiner triple system of order m which will colour every
simple cubic graph.
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