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The line-graph operator is one of the most natural operators in graph theory.
It is hard to find a general monograph on graph theory in which a chapter on line
graphs is missing. Therefore it is surprising that, unlike iterated line digraphs,
papers devoted to iterated line graphs are very rare. The aim of this paper is to
survey results on these graphs.

Let G be a graph. The line graph of G, L(G), is a graph whose vertices are edges
of G, and two vertices are adjacent in L(G) if and only if the corresponding edges
are adjacent in G. (For other basic notions we refer to the well-known monograph
of Harary [1].)

It is known that the class of line graphs is a strict subclass of the class of all
graphs. Several NP-hard problems become polynomial in the class of line graphs,
and for this reason line graphs are widely studied.

Iterated line graphs of G, L(G), are defined as follows:

i G ifi =0;
LG) = { L(LFY(@)) ifi>0.

In Figure 1 a sequence of iterated line graphs is depicted.
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Figure 1

Assertion 1 ([8]) Let G be a connected graph.

(i) If G is a path of length j, then L(D) is a path of length j—i if i < j, and it is
an empty graph if i > j.

(ii) If G is a cycle, then each iterated line graph of G is isomorphic to the original
cycle; if G is a claw K, 3 then each iterated line graph of G is a triangle.

(iii) If G is a connected graph different from a path, cycle and a claw, then
Jim [V(Z'(G)] = o0,
(We remark that |V (G)| denotes the number of vertices of G.) By Assertion 1,

it is enough to consider connected graphs different from a path, cycle and a claw.
Such graphs G' will be called prolific, since each two members of the sequence

G, L(G), I*(G),..., [}(G),... (1)



are distinct.

Considering the sequence (1), it is natural to study the way the parameters of
L*(G) depend on those of G. We begin with the minimum and the maximum degree,
0 and A, respectively, and the number of vertices of a graph.

Assertion 2 ([8]) For a prolific graph G and i>1 we have

2'- (6(G)-2) +2 < §(LHQ)) < A(LHG)) <€ 2°- (A(G)-2) + 2,

V@) T2 6@ -2+] < [VEG)] < V©)- TT[P (A6)-2)+1],

Moreover, equalities hold for regular prolific graphs.

By diam(G) and rad(G) we denote the diameter and the radius of the graph G,
respectively. For line graphs we have the following theorem.

Theorem 3 ([7]) Let G be a connected graph such that L(G) is not empty. Then
diam(G) — 1 < diam(L(Q)) < diam(G) +1 and
rad(G) — 1 < rad(L(G)) < rad(G) + 1.
For iterated line graphs, Theorem 3 immediately yields the bounds
diam(G) — i < diam(L'(G)) < diam(G) + i.
Of course, this is not satisfactory. We have

Theorem 4 ([8]) Let G be a prolific graph. Then there are ig and tg such that for
every i > ig it holds that .
diam(L'(GQ)) =i + tg.

Theorem 5 ([8]) Let G be a connected noncomplete graph with the minimum de-
gree at least three. Then for every ¢ > 1 we have

i+ diam(G) — 2 < diam(L(G)) < i + diam(G).
Unfortunately, for radius we do not have an analogue of Theorem 4.

Theorem 6 ([8]) Let G be a prolific graph. Then there are tg and ty, such that for
every © > 0 we have

(i —1/2log, z) +tg < rad(L'(Q)) < (z —/2log, z) + tg.

By Theorems 4 and 6, for every prolific graph G there is a number kg, such that
if i > kg then L'(G) is not a selfcentric graph (i.e., the radius of L*(Q) is strictly less
than its diameter). Clearly, almost all graphs are prolific. Therefore the following
result may be surprising.



Theorem 7 ([4]) Let i > 0. Then for almost all graphs G we have
diam(L'(Q)) = rad(L(G)) = i + 2.

We remark that Theorem 7 generalizes a well-known result which states that
diam(G) = rad(G) = 2 for almost all graphs G, i.e., almost all graphs are selfcentric
with diameter two.

Now we turn our attention to centers in iterated line graphs. It is known that
each graph G can serve as a center of some graph, see [1]. We generalized this result
to iterated line graphs.

Theorem 8 ([6]) Let G be a graph and let 0 < j < 2. If LI(G) 1is not empty then
there is a graph H, H O G, such that for every i, 0 <1 < j, we have

C(L'(H)) = L'(G).
Moreover, if G is triangle-free and L*(G) is not empty, then also
C(L*(H)) = L*(G).

Theorem 8 is best possible in a sense, since there is a graph G such that for every
i > 3 and any graph H, H D G, we have C(L'(H)) # L(G), see [6].

We remark that Theorem 8 characterizes the centers of line graphs, since each
induced subgraph of a line graph is a line graph. It means that G is a center of
some line graph if and only if G is a line graph. However, the center of i-iterated
line graph is not necessarily an i-iterated line graph if ¢+ > 2. Hence, the problem of
characterizing the centers of i-iterated line graphs remains open for 7 > 2.

For vertex-connectivity x of iterated line graphs we have

Theorem 9 ([5]) Let G be a connected graph with the minimum degree 6(G) > 3.
Then k(L*(G)) > §(G) — 1.

Theorem 10 ([5]) Let G be a graph with k(G) > 4. Then k(L*(G)) > 46(G) — 6.

Having in mind Theorem 4, the Assertion 2 is not satisfactory. Therefore, in [8]
we proposed the following conjecture:

Conjecture 1 Let G be a prolific graph. Then there is ig such that for every i > ig
it holds _ ,
S(LH@)) = 26(LY(G)) —2 and

A(LH(G)) = 2A(L(G))—2.

Recently, Hartke and Higgins proved both parts of the conjecture, see [2] for the
maximum degree and [3] for the minimum one. Combining the result of [3] with
Theorem 9 and 10, we have

Theorem 11 Let G be a prolific graph. Then there is ig such that for every i > ig
it holds . .
K(LH(G)) = 6(L*(G)).



By Theorem 11, the connectivity of L*(G) is the maximum possible, since it
equals the minimum degree.

Finally we remark that recently Xiong and Liu have characterized Hamiltonian
iterated line graphs L'(G) in terms of parameters of G, see [9].
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