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1. Introduction

Interconnection networks are often modelled by graphs and digraphs. The
switching elements or processors are represented by the vertices, and the communi-
cation links are represented by edges (if they are bidirectional) or arcs (if they are
unidirectional). Definitions of basic notions and references to relevant results in the
network modelling can be found in [5] and [6].

The connectivity of a (di)graph is a parameter that often serves as a criterion
of the fault tolerance of the corresponding computational network. If some proces-
sors or communication links cease to function, it is important that the remaining
processors can still intercommunicate. Hence, the underlying (di)graph is expected
to have a high connectivity. In particular, it is interesting to know under which
circumstances the (di)graph is maximally connected, i.e., its connectivity equals its
minimum degree.

Further on, when a message is transmitted from one processor to another
one, it is important to send it through as few processors as possible to decrease the
communication delay. It means that the distances in the corresponding (di)graph
are expected to be small. The maximum distance in a (di)graph is known as the
diameter and it is important to determine large (di)graphs with small diameter.
There is a famous problem related to this question. The (d,k)-graph (digraph)
problem consists in determining the largest number of vertices of a regular (di)graph
of diameter d and degree k. It is known that iterated line digraphs yield good lower
bound for (d, k)-digraph problem, see [13].

In networks we often do not need small distances between every pair of its
vertices. Usually, we expect that some “important” vertices have small distances to
all the vertices of the (di)graph, but the distances between “unimportant” vertices
may be larger. Hence, we require that the underlying (di)graph has a small radius.

Let F be an operator on (di)graphs. Then iterated F-graphs (digraphs) are
defined as G il

i _ me=u;
F(@) —{ F(F='(G))  ifi>0.

Considering the sequence
G,F(G), F*(Q),...,F(G),...

we are interested in how the parameters of F*(G) depend on the parameters of G
and on ¢. In particular, when a graph has some “good” properties, it is interesting to
determine wheather or not these properties are saved by its iterated F-graphs. For
instance, a complete digraph K, is a Moore digraph with diameter 1, and although
the iterated line digraphs of K, are not Moore digraphs, their numbers of vertices
are quite close to the Moore bound. Another good “starting” digraphs yield De
Bruin and Kautz digraphs.

In this paper we survey the results on connectivity, diameter and radius, when
F is the line digraph mapping, line graph mapping and the P,-path graph mapping.



All necessary definitions and notations as well as the basic results on connectivity,
diameter and radius can be found in monographs [8] and [15].

2. Line digraphs

Let D be a digraph, i.e., a directed graph without multiple arcs. By L(D)
we denote the line digraph of D. The vertices of L(D) are just the arcs of D, and
two vertices of L(D), i.e. the arcs of D, say uv and zy, are joined by an arc in L(D)
if and only if v = .

A digraph D is said to be strongly connected when for every pair of its
vertices v and v there exists a u — v path. The strong connectivity (or strong
vertex-connectivity) of D, x(D), is the smallest number of vertices whose deletion
results in a digraph that is either not strongly connected or trivial. Analogously,
the strong arc-connectivity of D, (D), is the smallest number of arcs whose
deletion results in a digraph that is not strongly connected.

The minimum degree of D, §(D), is the minimum over all the in-degrees and
out-degrees of the vertices of D. For every digraph D we have

#(D) < A(D) <4(D),

see e.g. [14]. For iterated line digraphs it is enough to consider only the strong
vertex-connectivity, as A(D) = k(L(D)). By the following theorem, the strong
connectivity of loopless i-iterated line digraph attains its theoretical maximum.

Theorem 1 [10]. Let D be a digraph without loops. Then there is ip such that for
every i > ip 4 '
K(L4(D)) = 6(L'(D)).

However, as 6(L*(G)) = §(G), the strong connectivity of iterated line digraphs
is bounded from above by a constant depending on D.

Now we turn our attention to distances in iterated line digraphs. Let D be a
digraph, and let u be a vertex in D. Then:

out-eccentricity of u is e},(u) = max{dp(u,v): v € V(D)};

in-eccentricity of uis  ej(u) = max{dp(v,u): v € V(D)};
eccentricity of u is ep(u) = max{e},(u), ep(u)}.

Using various eccentricities we obtain various radii. The out-radius (D) (in-
radius (D), radius r(D)) is the minimum value of e},(u) (ep(u), ep(u)) over
all vertices u of D. The maximum values of out-eccentricity, in-eccentricity and
eccentricity are equal and they are known as the diameter of D, diam(D).

Let D' arise from D by reversing the orientation of all arcs. Then ey, (u) =
e} (u) for every vertex v in D, and hence, r* (D) = r~(D’). This observation enables
us to restrict the considerations to radii ™ and r, only.

Since diam(D) < oo if and only if D is strongly connected, the following
theorems characterize the behavior of the out-radius, radius and the diameter in
iterated line digraphs.

Theorem 2 [18]. Let D be a nontrivial strongly connected digraph different from
a directed cycle. Then there exist positive integers ip and tp such that for every
1> 1p we have

rt(LY(D)) =i+ tp.



Theorem 3 [18]. Let D be a nontrivial strongly connected digraph different from
a directed cycle. Then there are tp and t', such that for every i > 0 we have

i+tp <r(LY(D)) <i+th.

Theorem 4 [13]. Let D be a nontrivial strongly connected digraph different from
a directed cycle. Then for every i > 0 we have

diam(L*(D)) = diam(D) + i.

It means that if D is a strongly connected digraph, then the (out-)eccentricity
of a central vertex in L(D) differs from the eccentricity of any other vertex by at
most a constant depending on D but not on 7. In fact this is not surprising, as
iterated line digraphs are good approximation for the (d, k)-digraph problem.

3. Line graphs

Let G be a graph. The line graph of G, L(G), is a graph whose vertices are
the edges of G. Two vertices are adjacent in L(G) if and only if the corresponding
edges are adjacent in G.

If G is a path of length j, then L*(D) is an empty graph for all 7 > j. If G is
a cycle, then each iterated line graph of G is isomorphic to the original cycle; and if
G is a claw K 3 then each iterated line graph of G is a triangle. Thus, it is enough
to consider connected graphs different from a path, cycle and a claw. Such graphs
G are called prolific, since each two members of the sequence G, L(G), L*(G), ...
are distinct, see [24].

A graph G is said to be connected when for every pair of its vertices v and v
there exists a u —v path. The connectivity (or vertex-connectivity) of G, x(G),
is the smallest number of vertices whose deletion results in a graph that is either
not connected or trivial. Analogously, the edge-connectivity of G, A\(G), is the
smallest number of edges whose deletion results in a graph that is not connected.

It is well-known that for every graph G' we have

k(G) < AG) <6(G),

where 6(G) is the minimum degree of G, see e.g. [15]. However, A(G) and «(L(G))
are not equal in general. We have only the following inequality
AG) < K(L(G)) < 0(L(G)).
Let G be a prolific graph. Then there is jg such that §(L’¢(G)) > 3. Denote
H = L’9(G). Then
§(L*(H)) > 2'(6(H) — 2) + 2

for every ¢ > 0, see [24]. It means that the minimum degree grows exponentially in
iterated line graphs.
For prolific graphs we have

Theorem 5 [22]. Let G be a prolific graph. Then there is ig such that for every
1> 1q we have . .
k(L2 (G)) > 46(L'(G)) — 6.



Recently, it was proved that for every prolific graph G there is kg such that
for every i, © > kg, it holds

S(LH@) =2 8(L1(G)) - 2,
see [16]. Hence, we have

Theorem 6. Let G be a prolific graph. Then there is kg such that for every 1 > kg
we have

K(L'(G)) = 8(LY(G)).

It means that although the minimum degree of iterated line graph grows
exponentially in the number of iterations, the connectivity of iterated line graph
attains its theoretical maximum (compare this with Theorem 1).

Let G be a graph and let u be a vertex in G. Then

eccentricity of u is eq(u) = max{dg(u,v) : v € V(G)}.

The diameter diam(G) is the maximum value of eg(u), and the radius 7(G) is the
minimum value of eg(u), respectively, over all vertices u of G.

The following theorems characterize the behavior of the diameter and the
radius in iterated line graphs.

Theorem 7 [24]. Let G be a prolific graph. Then there are ig and tg such that for
every © > ig we have
diam(L'(GQ)) =i + tg.

Theorem 8 [24]. Let G be a connected noncomplete graph with the minimum de-
gree at least three. Then for every i > 1 we have

i + diam(G) — 2 < diam(L(G)) < i + diam(G).

Theorem 9 [24]. Let G be a prolific graph. Then there are tg and ty; such that for
every i > 0 we have

(z‘ - \/QITgﬂ) +tg < r(LI(Q)) < (z - \/@> .

By Theorems 7 and 9, if GG is a prolific graph and k is a number, then there
is kg such that the diameter of L*(G) differs from the radius of L*(G) by at least k
for every ¢ > kg (compare this with Theorems 3 and 4). Clearly, almost all graphs
are prolific. Therefore, the following result may be surprising.

Theorem 10 [17]. Let i > 0. Then for almost all graphs G we have
diam(L'(G)) = r(LY(G)) = i + 2.

We remark that the case i = 0 of the previous theorem is a folklore in prob-
abilistic graph theory.

4. Path graphs



Let G be a graph and k£ > 1. The Py-path graph P;(G) of G has as its
vertex set the set of all paths of length & in G. Vertices of Py (G) that correspond to
paths A and B of G are joined by an edge in P,(G) if and only if the edges of AN B
form a path of length k—1 and A U B is either a path of length k41 or a cycle of
length k+1, see [7] and [23].

Path graphs generalize line graphs, as P;(G) is a line graph of G. Moreover,
the Pg-path graph is a special subgraph of k-iterated line graph, see [19], and based
on a notion of history, see [24], [18] and [19], we expect that the properties of Py-path
graphs are between those of k-iterated line digraphs and k-iterated line graphs.

If G is a connected graph, then L(G) is connected, too. This is not the case
of path graphs.

Let G be a graph, £ > 2, 0 < t < k—2, and let A be a path of length &
in G. By Py, we denote an induced subgraph of G which is a tree of diameter
k+t with a diametric path (z4, 2,1, .., 21, V0, V1, - -, Vk—t, Y1, Y2, - - -, Y), such that
all endvertices of Py, have distance < t either to vy or to vx_; and the degrees of
V1,02, ..., Vg1 are 2 in P}, Moreover, no vertex of V(P; ;) — {vi,va,..., vs—s1}
is joined by an edge to a vertex in V(G) — V(F;,;). We say that the path A is in
Py, A€ Pgy, if (vo,v1,...,vk—) is a subpath of A.

Pék’:), I3 Yo Y3

Figure 1

In Figure 1 a P, is pictured. Note that this graph contains also two P,
and one Fg,, but it does not contain a Fg,. We remark that by thin halfedges are
outlined possible edges joining vertices of P53 to vertices in V(G) — V(Fg;). We
have

Theorem 11 [20]. Let G be a connected graph without cycles of length smaller than
k+1. Then Py(G) is disconnected if and only if G contains a Pf,, 0 <t < k-2,
and a path A of length k such that A ¢ Py

As a corollary of Theorem 11 we have

Theorem 12 [21]. Let G be a connected graph. Then Py(G) is disconnected if and
only if G contains two distinct paths A and B of length two, such that the degrees
of both endvertices of A are 1 in G.

The situation is much more complicated for Py-path graphsif £ > 2. However,
graphs with connected P;-path graphs are already characterized.

Let G be a graph and let A be a path of length three in G. By P; we denote
a subgraph of G induced by vertices of a path of length 3, say (vg, v1,vs,v3), such
that neither vy nor v3 has a neighbour in V(G) — {vy,v2}. We say that the path A
is in P;, Ae P;, if A= (U(),Ul,’l)g,’l)g).

By P; we denote an induced subgraph of G with a path (z,vg,v1,v9,7), in
which every neighbour of vy (and analogously every neighbour of v5), except vy, v;
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and vy, has degree 1, or it has degree 2 and in this case it is adjacent to v;. Moreover,
no vertex of V(Py) — {v.1} is joined by an edge to a vertex of V(G) — V(Py) in G.
We say that the path A lies in Py, A € Py, if (vg,v1,v2) is a subpath of A.

Pe L

U v
Vg /W1 [\U2 D3 T Yo U1 v2 Y

Figure 2 Figure 3

In Figure 2 a Py is pictured and a Py is in Figure 3. The edges that must be
in G are painted thick, while edges, that are not necessarily in GG, are painted thin.

Let K, be a complete graph on 4 vertices, and let S be a set (possibly empty)
of independent vertices. A graph obtained from K, U S by joining all vertices of
S to special vertex of K, is denoted by Kj, see Figure 4. Let K,; be a complete
bipartite graph, ¢t > 1, and let (X, Y’) be the bipartition of Ks;, X = {vy,v2}. Join
t sets of independent vertices by edges, each to one vertex of Y; further, glue a set
of stars (each with at least 3 vertices) by one endvertex, each either to v; or to vs;
glue a set of triangles by one vertex, each either to v; or to vy; and finally, join v,
to vo by an edge. The resulting graph is denoted by K3, see Figure 5.

K

Figure 4 Figure 5
We have

Theorem 13 [20]. Let G be a connected graph such that Ps(G) is not empty. Then
P3(Q) is disconnected if and only if one of the following holds:

(1) G contains a Py, t € {3,4}, and a path A of length 8 such that A ¢ P;;
(2) G is isomorphic to Kj;
(3) G is isomorphic to K3,, t > 1.

The situation is easier if we restrict ourselves to graphs having special prop-
erties. We have

Theorem 14 [11]. Let G be a connected graph with 6(G) > 2(k—1). Then
A(Pe(G)) = 2(6 — (k—1)).
As a corrolary of this result we receive

Theorem 15 [11]. Let G be a connected graph with 6(G) > 2(k—1). Then
(1) Pi(G) is connected for every i > 0;

(2) MPiQ)) =6(PUQ)) if G is a regular graph.
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Compare the latter result with Theorem 6.
There are some bounds on the diameter of path graphs. However, also here
the situation is too complicated for Py-path graphs if £ is “large”.

Theorem 16 [3]. Let G be a graph such that Py(G) is not empty. Then
diam(Py,(G)) > diam(G) — k.
Theorem 17 [3]. Let G be a tree and let H be a component of P,(G). Then
diam(H) < diam(G) + k(k — 2).

Theorem 18 [3]. Let G be a connected graph such that diam(G) > $k? + 5k — 2,
and 2 < k < 4. Then for any component H of Px(G) we have

diam(H) < diam(G) + k* — 2

We remark that for £ = 2 the statement of Theorem 18 is valid for connected
graphs with arbitrary diameter, see [21].

Up to now, only a few is known about iterated path graphs. We present
here results on the diameter of iterated P,-path graphs. First we introduce some
definitions. By G, 7 > 1, we denote a tree composed of two paths of length two,
central vertices of which are joined by a path of length 2j—1. A dragon is a unicyclic
graph composed of an even cycle C' and a set of vertices, each joined by an edge
to some vertex of C'. Moreover, each pair of vertices of a dragon that have degree
at least three, has an even distance (see Figure 6 for a dragon with cycle of length
8). Broken dragon is a tree composed of a diametric path 7" and a set of vertices,
each joined by an edge to some vertex of 7'. Moreover, each pair of vertices of a
broken dragon that have degree at least three, has an even distance (see Figure 8
for a broken dragon with diametric path of length 9). A dragon’s egg is a tree
composed of a claw K 3 in which each edge is subdivided by one vertex, and a set
of vertices, each joined by an edge either to the central vertex or to some endvertex
of the subdivided claw (see Figure 7 for a dragon’s egg). If a connected graph G is
different from a cycle, dragon, broken dragon, dragon’s egg and the graph G, 7 > 1,
then G is called 2-prolific.

dragon’s egg

Figure 6 Figure 7

broken dragon

Figure 8




By Theorem 12 at most one component of P,(G) contains an edge if G is a
connected graph. Hence, the following theorem characterizes the behaviour of the
diameter in iterated P»-path graphs.

Theorem 19 [21]. Let G be a graph with a unique nontrivial component. Denote
by H; a nontrivial component of PJ(G) (if it exists), j > 0.

(1) If G is a broken dragon, then there is ig such that for every i > ig the graph
Pi(G) is empty.

(2) If G is a cycle, or a dragon, dragon’s egg, or the graph G;, j > 1, then there
are ig and tg such that for every i > ig we have

dzam(Hz) = t(;.

(3) If G is a prolific graph, then there are ig and tg such that for every i > i we
have

For k > 2, the situation is extremely complicated in general. However, for
graphs with “large” degrees we have

Theorem 20 [11]. Let G be a connected graph with 6(G) > 2(k—1). Then for
every 1 > 0 it holds
diam(P{(G)) < diam(G) + 2ki.

Observe that by Theorem 15, if GG satisfies the hypothesis of Theorem 20,
then P}(G) is connected.

5. Concluding remarks

There are several invariants interesting for communication networks, which
connect the connectivity with the diameter. The persistence of a (di)graph G, de-
noted po(G), is the minimum number of vertices of G whose removal either increases
the diameter or results in a trivial (di)graph. Similarly, the line persistence p;(G),
is the minimum number of edges whose deletion increases the diameter, see [9].

The s-vertex-diameter-vulnerability, K(s;G), of a (di)graph G is the
maximum of the diameters of the (di)graphs obtained by removing s arbitrary ver-
tices of G. Analogously, the s-edge-diameter-vulnerability, A(s; G), is the max-
imum of the diameters of the (di)graphs obtained by removing s arbitrary edges,
see [4].

The conditional diameter (or P-diameter) of a (di)graph G is the maxi-
mum distance among sub(di)graphs of G satisfying a given property P, see [1]. Its
consideration could be of some interest if, in some applications, we need to min-
imize the communication delays between the network clusters modelled by such
sub(di)graphs. If P is the property that sub(di)graph consists of a unique vertex,
then the conditional diameter coincides with the standard diameter. Analogously
as above, the conditional diameter vulnerability is defined, see [2].

The diameter vulnerability and the conditional diameter vulnerability of it-
erated line digraphs are studied in [25], [12] and [2]. However, there are no bounds
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for

the invariants listed above for iterated line graphs or iterated path graphs at

present.
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