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ABSTRACT. In the paper we present lower bounds for the connectivity of the i-
iterated line graph L*(G) of a graph G. We prove that if G is a connected regular
graph and i > 5, then the connectivity of L*(G) is equal to the degree of L(G),
that is, the connectivity of L?(G) attains its theoretical maximum (we remark that
the bound on 7 is best possible). Moreover, if a hypothesis on the growth of the
minimum degree of the i-iterated line graph is true, then an analogous result is true
for an arbitrary graph G if ¢ is sufficiently large.
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1. INTRODUCTION AND RESULTS

In recent years, the investigation of iterated line graphs has recorded a large
progress. These graphs are defined inductively as follows:

Li(G) { G ift=0,

| L(YHG)) ifi >0,

where L is the line graph operator. The diameter and radius of iterated line graphs
are examinated in [7], and [6] is devoted to the centers of these graphs. In [5], Hartke
and Higgins study the growth of the maximum degree of iterated line graphs, and
very recently, in [8] Xiong and Liu characterize the graphs whose i-iterated line
graphs are Hamiltonian.

Even larger emphasis is devoted to iterated line digraphs, as they are well-suited
for designing of interconnection networks. In [3], Fabrega and Fiol prove that the
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(strong) connectivity of the i-iterated line digraph is equal to its minimum degree
if 7 is sufficiently large. In fact, the result is not surprising as the minimum degree
of the iterated line digraph is equal to the minimum degree of the original digraph.
This is not true in the case of graphs. The minimum degree of the i-iterated
line graph grows exponentially as a function of 7. Nevertheless, we prove here an
analogue of the above result for graphs.

Let G be a connected graph. By x(G) and A(G) we denote its vertex-connectivity
and its edge-connectivity, respectively. The minimum degree of GG is denoted by
d(G). It is well-known, see e.g. [4], that for every graph G we have

r(G) < ANG) <6(G).

Moreover, for every triple of positive integers x, A and J, Kk < XA < §, there is a
graph G » s such that k(G 5) = K, A(Gea5) = A and 6(Gi x,5) = 9, see [1]. For
the vertex-connectivity of line graph we have

AG) < K(L(G)) < 3(L(G)),

see [2]. However, the graphs G » s of [1] satisfy also kK(L(Gx,x,s5)) = A. It means
that in the extremal case, for every § > 1 there exists a graph G such that xK(G) =
k(L(G)) =1 and §(G) = 4. It is interesting that this property cannot be extended
to iterated line graphs. We have:

Theorem 1. Let G be a connected graph with the minimum degree & > 3. Then
k(L%(G)) > 6 — 1.

Theorem 1 is the best possible in a sense. Let G be a connected graph with
a bridge uv, such that the degrees of both w and v are equal to 6 = §(G), see
Figure 1. Denote by G, and G, the components of G — {uv} containing u and v,
respectively. Then it is easy to see that for every pair of edges e, of L(G,) and e,
of L(G,), there are at most 6—1 edge-disjoint paths joining the vertices of e, with
the vertices of e, in L(G), see Figure 2. Thus x(L*(G)) < §—1.

Figure 1 Figure 2

Let G be a graph with §(G) > 3. Then
§(L'(G)) 2 2'(8(G) —2) +2 (1)

for every i > 0, see [7]. Since x(L*T'(G)) > k(L*(GQ)), Theorem 1 shows that
k(L}(G)) grows exponentially as a function of i.

Since 6(L%(G)) > 46(G)—6 by (1), there is a gap between §(L?(G)) and x(L2(G))
in Theorem 1. This gap means that the theorem guarantees the vertex-connectivity
of L*(G) only (roughly speaking) at most one fourth of the minimum degree of
Li(G). The following theorem gives a better bound for graphs with large vertex-
connectivity.
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Theorem 2. Let G be a graph with k(G) > 4. Then k(L?*(G)) > 46(G) — 6.

In [7] we present a conjecture that for every connected graph G, different from
a path, a cycle and a claw K 3, there is an integer i¢ such that for every ¢, i > iq,

S(LTH@G)) =2 §(LY(G)) — 2.

If the conjecture is true (and we remark that it is true at least for regular graphs),
then for every graph G, different from a path, a cycle and a claw, there is jg such
that for every j, 7 > ja, we have

(L (G)) = 8(L(G)),

by Theorem 1 and 2. It means that the vertex-connectivity of iterated line graphs
attains its maximum. Here we have to point out that, recently Hartke and Higgins
proved an analogue of the conjecture for the maximum degree of iterated line graphs,
see [5].

We remark that in the pioneering work on the connectivity of iterated line graphs
[2] Chartrand and Stewart give a lower bound on the connectivity of L(G) in terms
of the connectivity of G. They proved

K(LY(G)) > 271 (8(G) — 2) + 2.
However, by (1) and Theorem 2 we have
K(LY(G)) > 2°(6(G) — 2) + 2

for k(G) > 4 and @ > 2.
Let G be a connected graph with §(G) > 3. Then §(L?(G)) > 5 and hence,
k(L*(G)) > 4, by Theorem 1. The next theorem improves this observation.

Theorem 3. Let G be a connected graph with §(G) > 3. We have:

(1) If M(G) > 2 or 6(G) > 5, then k(L*(Q)) > 4;
(i) if M(G) =1 and 3 < §(G) < 4, then k(L*(G)) > 4.

By the example below Theorem 1, Theorem 3 is the best possible, i.e., it deter-
mines the least iteration of the line graph such that the vertex-connectivity is at
least 4.

Let G be a connected graph different from a path, a cycle and a claw. Assume
that 6(G) < 3. Denote by dy (d2; d3) the length of a longest path in G, interior
vertices of which have degrees 2, and the endvertices have degrees 1 and 3 (the
endvertices of which have degrees 1 and a degree larger than 3; both endvertices
have degrees at least 3). Let kg = max{d;+1,ds,d3—1}. It is easy to see that
§(L¥(Q)) < 3if k < kg, and 6(L*¢(GQ)) > 3, see e.g. [7, Lemma, 7].

Now we are able to summarize the evolution of x(L*(G)). Let G be a connected
graph, different from a path, a cycle and a claw. If 6(G) < 3 then x(G) < 3 as
well. Denote H = L*¢(G) if 6(G) < 3, and H = G if §(G) > 3. Then §(H) > 3;
k(L?(H)) > 2 by Theorem 1; and x(L3*(H)) > 4 by Theorem 3. (However, if
A(H) > 2 or if §(H) > 5, then even k(L?(H)) > 4.) For every i > 5 we have
k(LY(H)) > 45(L*=2(H)) — 6 by Theorem 2, and this result is the best possible at
least for regular graphs.
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Finally, we remark that there is a regular graph G with 6(G) = 3, such that
k(LY(Q)) < 6(LY(@)) if i < 5, and k(L*(G)) = §(L*(G)) if i > 5. Just take a tree
with a special vertex w, in which all vertices that are “not far” from u have degree
3, and the remaining vertices have degree 1. Now glue to the tree plenty of copies
of K4, each by the “middle of an edge” to one endvertex of the tree. The resulting
graph G is regular of degree 3, and representing the vertices of L*(G) in L2(G) one
can show that x(L*(Q)) < 18 = §(L*(G)).

All proofs and necessary notions are postponed to the next section.

2. PROOFS
Throughout the paper we use the following definition of vertex-connectivity:

Definition. A graph G is k-vertex-connected (or simply k-connected) if it has
at least k+1 vertices, and if for every pair u and v of non-adjacent vertices of G there
are at least k internally-vertex-disjoint u—wv paths in G. The vertex-connectivity
k(@) is the maximum value of k such that G is a k-vertex-connected graph.

There are several definitions equivalent with the one presented here, see e.g. [4].
We use two of them:

(i) If G is a k-connected graph, then for every pair of sets of its vertices U and
V such that |U| = |V| =1 < k, there are | vertex-disjoint paths connecting
the vertices of U with the vertices in V.

(ii) If G is a k-connected graph, then excluding ! < k elements of G (some of
them are vertices and the other are edges) will result in a (k—[)-connected
graph.

Let G be a graph and let u be a vertex in L?(G). By 2-history of u we mean
the smallest subgraph U of G, such that L?(U) contains the vertex u. It is easy to
see that 2-history is always a path of length two, and in fact there is a one-to-one
correspondence between the vertices of L?(G) and the paths of length two in G.
(We remark that interesting properties of i-histories can be found in [7].)

For simplifying the notation we adopt the following convention. We denote the
vertices of L?(G) (as well as the vertices of G) by small letters u, v, ..., while
their 2-histories (or simply histories) will be denoted by capital letters U, V, etc.
It means that if U is a history and u is a vertex in L?(G), then U is the 2-history
corresponding to the vertex u. Further, we denote a history (i.e., a path of length
two in G) as a triple of vertices in parentheses, say U = (ug,u1,us), where the
middle vertex (u; in this case) has degree 2 in U. However, to distinguish the
histories from other paths in G we denote the paths without parentheses; i.e., by
P = vy, v9,v3 we denote a v;—v3 path of length two. This enables us to write an
extension of P, by vg in the beginning and by v4 at the end, as vg, P, v4.

Observe that two distinct vertices, say u and v, in L?(G) are adjacent if and only
if U and V share an edge in common. Let P = zp, 21,...,2, be a path in G. A
path wg, wy, ..., w in L?(G) is called a P-based path if for every i, 0 < i < k/,
W, contains an edge of P.

Lemma 4. Let § be the minimum degree of a graph G, and let P = zg, 21, ..., 2k,
k > 2, be a path in G. Then there are 6—1 verter-disjoint P-based paths in L*(G),
P, Ps,...,Ps_1 with P; = w;0,w;1,--.,W;;, such that W; o contains the edge
zoz1 and W, i, contains the edge zp_12, 1 <1 < d—1.
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Proof. We construct paths of two types: those whose vertices’ histories are con-

tained completely in P, and those who are not. Let Wi, = (2j,2j41,%j+2),
0 < j < k—2. Then P; is a unique “straight” P-based path among Py, Ps, ..., Ps_1.
Denote by 3 j,23;,...,%5—1,; 0—2 vertices of G that are adjacent to z; and

distinct from z;_q and zj41, 1 < j < k—1. (Recall that the minimum degree of G
isd.) For2<i<d—1land 0<j<2(k-2)+1let

W — { (21j/2)> 21 /214+1 Ti, j/2) 1), i is even,
Y U@ 2040 2072041 21 2042), 1 5 S 0dd.

Then P; = w; 0, wi1,---,W;2k—2)+1 18 @ P-based path of the second type, and the
paths Py, Ps, ..., Ps_q are vertex-disjoint. [J

Observe that the paths Py, Ps, ..., Ps_1 in the proof of Lemma 4 are constructed
so that for every 4, 1 <14 < §—1, exactly two histories of W; o, W; 1, ..., W; i, contain
the edge z;zj4+1 if 1 < j < k—1; exactly one of them contains the edge zpz1; and
exactly one contains the edge zx_12-

Proof of Theorem 1. Since 6(G) > 3, L?(G) contains two non-adjacent vertices. Let
u and v be non-adjacent vertices in L*(G), U = (ug, u1,uz) and V = (vg, v1,v2).
Then U and V are edge-disjoint. Denote by P’ a shortest path in G joining a vertex
of U with a vertex of V. Let P be a path containing P’, with exactly two edges
outside P’, namely one edge of U and one edge of V. (The edges of U and V are
the first and the last edge of P, respectively.) Clearly, the length of P is at least 2.
Now denote by Py, Ps,...,Ps_; the —1 vertex-disjoint P-based paths in L%(G),
guaranteed by Lemma 4. Let 1 <4 < §—1. Since the history of the first vertex of
P; contains an edge of U, this vertex is either u or it is adjacent to u. Analogously,
the terminal vertex of P; is either v or it is adjacent to v. Hence, P, Py, ..., Ps_1
can be extended to d—1 internally-vertex-disjoint u—v paths. [

Since a history cannot contain a pair of non-adjacent edges, we have the following
observation:

Observation 5. Let P and P’ be vertex-disjoint paths in a graph G. Then every

pair of a P-based path and a P’-based one, forms a pair of vertex-disjoint paths in
L%(G).

In fact, a stronger statement is true. Let G be a graph with the minimum degree
d, and let ajas and biby be edges of G. Further, let P{ and Pj be vertex-disjoint
a1—by and ay—by paths, respectively. Denote Py = ag, P{, by and P> = a4, Py, by.
Then P; and P, share two edges in common, namely aias and bibs. However,
the 0—1 P;-based paths and the d—1 P,-based ones, constructed in the proof of
Lemma 4, form a collection of 2§ — 2 vertex-disjoint paths in L?(G).

Let 6 be the minimum degree in a graph G, and let u be a vertex in L?(G),
U = (ug, u1,u2). Then the degree of u is at least 4§ — 6. Moreover,

(i) 6—1 neighbours of u have history of a form (z,ug, u;) for x adjacent to wuyg,
T F# us;

(ii) 6—2 neighbours of u have history (uo, u1, ), x # ug;

(iii) 0—2 neighbours of u have history (z, u1,us2), T # uo;

(iv) d—1 neighbours of u have history (u1, us,z).
In the proof of Theorem 2 we have to use all 46 — 6 neighbours of u described above.
We divide the proof into three lemmas.
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Lemma 6. Let G be a graph with k(G) > 4, and let 6 be the minimum degree of
G. Further, let u and v be vertices in L*(Q), U = (ug, u1,us) and V = (vg, v1,v2).
If the distance in G between uy and vy is greater than or equal to 2, then there are
46 — 6 internally-vertex-disjoint u—v paths in L*(G).

Proof. Let x1 be a neighbour of uy in G, z1 ¢ {ug,us2}, and let y; be a neighbour
of vy, y1 ¢ {vo,v2}. As k(G) > 4, there are four vertex-disjoint paths connecting
{ug, w1, ug, 21} with {vg,v1,ve,y1}. Extending these paths to u; in the beginning
and to v; at the end, we obtain a collection of four internally-vertex-disjoint u;—v;
paths P, Py, Pj and P;. Moreover, a set of vertices adjacent to u; in these paths
is {ug, ug, x1, 22} for a neighbour z of uy, and a set of vertices adjacent to vy in
these paths is {vg, v, y1,y2} for a neighbour y, of v;. Up to symmetry, there are
three cases to distinguish:

/ /
o P 51 Yo o P 51 Yo
Ty Py §—3 N1 r1 Py -3 Y1
U P; 0—1 V1 U1 Pj 5—1 U1
x v x
2 Pzi 51 2 2 Pzi 5—1 Y2
U9 Y2 (/5] Vo
Figure 3 Figure 4
(1) P{ = U1,UQy--.,V0, V1, P2’ = U1,T1y---4Y1,V1, P?’) = U1,T2,...,0V2,V1 and

P = uy,ug,...,y2,v1, see Figure 3 (the edges of U and V are depicted by thick
lines). We extend the paths Py, ..., Pj to Py, ..., Py, so that the first vertices of all
P;-based paths are adjacent to u, and the last vertices of all of them are adjacent
to v, i < i < 4;ie., weset Py = P[; Py = ug, Py, vo; Ps = ug, Py and Py = Py, vs.
Denote by P; the set of §—1 P;-based paths guaranteed by Lemma 4, 1 < ¢ < 4.
By Observation 5, if we delete the first two and also the last two vertices from all
paths of P, U---U Py, we receive a collection of vertex-disjoint paths. However, by
the note preceding Lemma 6, the set of 46 — 4 paths P; U---UP4 is not necessarily
a set of vertex-disjoint paths. Two paths of P, may contain vertices of two paths of
P53 (namely the vertices with histories (ug, u1, z2) and (us,u1,x1)); and two paths
of P, may contain vertices of two paths of P, (the vertices with histories (y1, v1, v2)
and (ya,v1,vp)). For this reason, denote by Py and P2 two special P,-based paths
of Pz. Let P21 be an 31—t1 path, Sl = (’U,(),’U,l,’u,g) and T1 = (yg,’Ul,’Uo), and let
P2 be an sy—ts path, Sy = (ug,u1,72) and Ty = (va,v1,v0). (Clearly, the set P
can be chosen so that it contains P} and P2.) Then the vertices of the paths in
P1LU (Py — {P4, Pi}) UP3 U Py are mutually distinct, and hence, these paths can
be extended to 46 — 6 internally-vertex-disjoint u—v paths.

(2) P{ = U1, UQy...,V0, V1, PQ’ = U1y, L1y++9Y15V1, P3I = U1, L2y...45Y2,U1 and
P; = uy,us,...,vq,v1, see Figure 4. This case can be solved analogously as the
previous one. The number of P;-based paths is indicated in the picture, 1 <1 < 4.

(3) P| = ui,ugy--.,y1,v1, Py = u1,Z1,...,00,01, Py = u1,x2,...,v2,v; and
Pj = uy,us,...,Y2,v1, see Figure 5. Let Py = P{,vo; Py = ug, Ps; P3 = uy, Py and
Py = Pj,vy. Denote by P; the set of 6—1 P;-based paths guaranteed by Lemma 4,
1 <4 < 4. Analogously as in the case (1), the first vertices of all paths in P; are
adjacent to u, and the last vertices of all of them are adjacent to v. However, the
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paths of Py U---UPy are not necessarily vertex-disjoint. In this case we delete four
paths of P; U---UP4 and we add two different ones, to obtain a collection of 46 — 6
vertex-disjoint paths.

Let Q1 be the set of internal vertices of P and Pj, and let Q2 be the set of
internal vertices of Py and Pj. Since k(G) > 4, there is a path Py in G — {u1,v1},
that connects a vertex of ()1 with a vertex of Q5. Assume that Py is a zop—wg path,
where z is a vertex of P| and wy is a vertex of Pj, see Figure 5. Denote by le and
Pj2 two special Pj-based paths of P;, 1 <j < 2:

(i) Pl isana;—by Pi-based path containing ey, A;=(uy, ug, 3), B1=(v2, v1,vp)
and E1=(Zl, 20, 2’2).
(ii) P} is an ay—bs P;-based path containing es, Ao=(u1,ug, 4), Ba=(y2, v1,v0)
and E2=(Zl, 20, 2’3).
(iii) P} is a ¢;—d; P»-based path containing f1, C1=(ug, u1, u2), D1=(y3, vo, v1)
and F1:(’u}2, Wo, ’LU1).
(iv) P2 is a cy—dy Ps-based path containing fo, Co=(uq, u1, T2), Da=(y4, vo, v1)
and Fyo=(ws, wp, w1).
Clearly, the sets P; and P can be chosen so that they contain P}, PZ, P} and P3.
Using Py we construct two new paths in L?(G).

(i) P} begins with the a;—e; subpath of P}, then it contains a Py-based path
(one among the —1 guaranteed by Lemma 4), and it terminates with the
f1—dy subpath of P}. (We remark that if the length of Py is one, we do not
include a Py-based path into Pj.)

(i) P2 begins with the as—es subpath of P?, then it contains e3, Py-based path
(disjoint from the one used in Pj), f3, and it terminates with the fa—ds
subpath of P2, E3 = (23, 29, 22) and F3 = (ws, wp, w3).

/ z3
uo‘\fopl 5—1 gl_%;o 6—3 U1
x3 :Z2
24 P0§2 Y3 Y4
P, 5-3 ™2 5
b I wo W1 Vo U1
Py ws 51
T 0
2 P 5—1 2
U9 O OY2
Figure 5

Now the vertices of the paths in
(P1—{P{, P{}) U (P2 —{P,, P}}) UPs UPs U{Py, '}

are mutually distinct (by Observation 5, it is enough to check the first two and
the last two vertices of these paths), and hence, they can be extended to 4§ — 6
internally-vertex-disjoint u—v paths. [

Lemma 7. Let G be a graph with k(G) > 4, and let § be the minimum degree of
G. Further, let u and v be non-adjacent vertices in L2(G), U = (ug,u1,us) and
V = (vo,v1,v2). If uyvy is an edge of G, then there are 45 — 6 internally-vertez-
disjoint u—v paths in L*(G).
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Proof. The proof of Lemma 7 is analogous to that of Lemma 6, if the edge uyv; is
neither in U nor in V. Hence, suppose that us = v;. Since v and v are non-adjacent
vertices, we have u; ¢ {vo,v2}. Denote by ;1 a neighbour of uq, x1 ¢ {ug, ua}.
As k(G) > 4, there are three vertex-disjoint paths connecting {ug,uq1,z1} with
{vo,v1,v2} in G — {uyv1}. Extending these paths to u; in the beginning and to
vy at the end, we obtain (together with the u;—wv; path of length 1) a collection
of four internally-vertex-disjoint paths P, Pj, Pi and P; in G. Up to symmetry,
there are two cases to distinguish:

(1) P{ = u1,ug,...,v0,01, Py =u1,zo,...,y1,v1, Py = u1,v1 and Py = uq, 1,
oo vy V2,01, With o & {ug, uz, 21} and y1 ¢ {vo,va, u1}, see Figure 6. Let P, = P;;
Py = ug, Py, vo; P3 = P}, v9 and Py = ug, P;. Denote by P; the set of 6—1 P;-based
paths guaranteed by Lemma 4, 1 <17 < 4. Let P = P; U Py U P3 U P4. Omitting
two paths of P, (analogously as in the case (1) in the proof of Lemma 6) one can
reduce P to a collection of 40 — 6 vertex-disjoint paths, by Observation 5, and these
paths can be extended to internally-vertex-disjoint u—wv paths.

(2) P{ = U1, UQy+ -y Y1,V1, P2/ = U1yT2y...,V0y V1, Pgl, = U1,V1 and Pi = U1,T1,
e ay V2,01, With o & {ug,u2,z1} and y1 ¢ {vo,ve,u1}, see Figure 7. Let P, =
P, vy; Py = ug, Py; P3 = Pj,vy and Py = ug, P;. Since k(G) > 4, there is a path
Py in G — {u1,v1} joining an internal vertex of P| with an internal vertex of P
or Pj. Assume that Py is a zg—wg path, where zy is a vertex of P; and wy is a
vertex of Pj. Then analogously as in the case (3) in the proof of Lemma 6, one can
construct 46 — 6 internally-vertex-disjoint u—v paths in L?(G). O

/ /
woo L1 0=1 o o 1 0-1 20923 oy
2 Py 6-3 z3 Py 5-3 102 51 v
Py 6 P wo s
Ul 3 —1 V1=U29 Ul 3 —1 V1=U2
Py - P, _
1 4 0—1 Vo - 4 0—1 v
Figure 6 Figure 7

Lemma 8. Let G be a graph with k(G) > 4, and let § be the minimum degree of
G. Further, let u and v be non-adjacent vertices in L*(G), U = (ug,u1,us) and
V = (vo,v1,v2). If uy = vy, then there are 46 — 6 internally-vertex-disjoint u—v
paths in L2(G).

Proof. Since u and v are non-adjacent vertices, {ug, uz} N{vg, v2} = 0, see Figure 8.
As k(G) > 4, there are two vertex-disjoint paths connecting {ug, us} with {vg, v}
in G — {u1}. Extending these paths to u; and v; we obtain two walks P; and
P, in G. Assume that P, = wuq,ug,...,v9,v1 and Py = uq,us,...,v2,v1. Let
P3; = ug,u1,v9 and Py = us,u1,vs. Denote by P; the set of §—1 P;-based paths
guaranteed by Lemma 4, 1 < i < 4. Let P = P UPyUP3UP4. Omitting two paths
of P (analogously as in the case (1) in the proof of Lemma 6) one can reduce P to
a collection of 46 — 6 vertex-disjoint paths, by Observation 5, and these paths can
be extended to internally-vertex-disjoint u—v paths. [
8



Figure 8

Now Theorem 2 is a straightforward consequence of Lemmas 6, 7 and 8.
Lemma 9. Let G be a graph with A\(G) > 2 and 6(G) > 3. Then k(L?*(G)) > 4.

Proof. Let u and v be non-adjacent vertices in L2(G), U = (ug,u1,uz) and V =
(vp,v1,v2). Let P be a u;—v; path in G and let x and y be vertices of P. By
z =¥y we denote that z is a vertex of the u; —y subpath of P.

At first suppose that the distance in G from u; to vy is at least 2, see Figure 9.
Let P; and P> be two edge-disjoint u;—w; paths, such that their union does not
contain a union of two edge-disjoint u;—wv; paths as a proper subgraph. Suppose
that 2 and y are vertices of both P; and Py, z # y, such that  <Pry and y <2 z.
Denote by Pj a path composed of the u; —z subpath of P; and the x—wv; subpath
of P,. Analogously, denote by P4 a path composed of the u;—y subpath of P, and
the y—wv; subpath of P;. Then P] and Pj are edge-disjoint u; —wv; paths, and their
union is a proper subgraph of P; U P,, which contradicts the choice of P, and P.
Hence, for the vertices in the intersection of P; and P, we have z <1 y if and only
if z <2y,

Figure 9

Let 21, %9, ..., T, be the vertices of P, N Py. Assume that z; <Pz <P1... <P
z,. Clearly, z1 = u; and z,, = v1. Let

Py =x1,a11,012,...,01,%2, ..y Tpn_1,0n_1,1,0n-12s-+5C0n_1k,_1,Tn;

P2 =x1,€1,1,C1,2,---,C1,1,,%2, ey Tn—-1,Cn—-1,1Cn—-1,25---7yCn—1,l,_1,Tn-

As 6(G) > 3, there is an edge incident to a;j;, say a; ;b; j, which is not in P,
1 <i<nandl<j<Ek;. Analogously, there is an edge, say c; ;d; ;, lying outside
P, 1<i<mnandl<j<I;. Now we construct four vertex-disjoint paths P, Py,
P; and P} in L?(G). In what follows, histories of vertices of these paths are listed:

P1*5 (391,611,1,@1,2), (a1,1,a1,2,a1,3), cey (a1,k1—1,a1,k1,$2), (a1,k1,$2,a2,1),
(2,02,1,822)s -+, (@p_1ky_1—1:0n—1k,_15Tn);

Py : (z1,c11,¢1,2), (ci1,¢12,¢13), .. (Cr—1,C1,0,%2), (c1ry,%2,cC21),
(®2,C2,1,2,2)5 -+ 5 (Cn—1,1p_1—1,Cn—1,ln_1>Tn);
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ng : (501,01,1751,1), (51,1;a1,1701,2)7 (01,17a1,2,bl,2), cee (bl,klaal,k17x2)a
(a1,k1,$2,02,1), ($2,C2,1,d2,1), (d2,1,02,1,02,2), cee
Pf: (z1,¢11,d1,1), (di1,¢11,¢12), (c11,¢1,2,d12)s -ooy  (diky,Clkys T2),

(Cl,k1,$2,az,1), ($2,a2,1,b2,1), (52,1,612,1,&2,2),
Le., P and Py are “straight” Pj-based and P»-based paths, respectively, while P3
and Pf are paths containing alternatively P;-based and Ps-based parts. Clearly,
¥, Py, Py and Pj are vertex-disjoint, and it is a matter of routine to check that
they can be extended to four internally-vertex-disjoint u—v paths in L?(G).

Now suppose that uiv; is an edge of G. This case can be solved analogously as
the previous one if uyv; is neither in U nor in V. Hence, suppose that us = v;. Let
Py be a shortest u;—v1 path in G — {uyv1}, and let P, = uq,v;. Since u and v are
non-adjacent vertices, u; ¢ {vo,v2}, see Figure 10. As there are just two vertices in
the intersection of P; and Ps, we can construct P; and P5 analogously as the paths
P} and P§ above (i.e., both Pj and Py are P;-based paths). Further, let Py and
Pf be one-vertex paths, with histories of the vertices (u1,v1,v0) and (u1,v1,v2).
Clearly, these four paths can be extended to internally-vertex-disjoint u—v paths.

Figure 10

Finally, suppose that u; = v;. Since v and v are non-adjacent vertices, we have
{ug, uz} N{vo,v2} = 0, and it is easy to see that there are four u—v paths of length
2in L*(G). O

Proof of Theorem 3. If \(G) > 2 then x(L*(G)) > 4, by Lemma 9. Similarly,
if §(G) > 5 then x(L?*(G)) > 4, by Theorem 1. Thus, suppose that A\(G) = 1
and 3 < 0(G) < 4. Since 6(L(G)) > 4 and each edge of L(G) lies in a triangle,
AL(G)) > 2. Now applying Lemma 9 to L(G) we obtain x(L3(G)) > 4. O
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