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ABSTRACT. We prove that for every number n > 1, the n-iterated Ps-path graph of
G is isomorphic to G if and only if G is a collection of cycles, each of length at least
4. Hence, G is isomorphic to P3(G) if and only if G is a collection of cycles, each
of length at least 4. Moreover, for £ > 4 we reduce the problem of characterizing
graphs G such that Px(G) & G to graphs without cycles of length exceeding k.
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1. INTRODUCTION

Let G be a graph, £ > 1, and let Py be the set of paths of length k£ in G. The
vertex set of a path graph Py (G) is the set Py. Two vertices of Py (G) are joined by
an edge if and only if the edges in the intersection of the corresponding paths form
a path of length k—1 in GG, and their union forms either a cycle or a path of length
k+1. It means that the vertices are adjacent if and only if one can be obtained
from the other by ”shifting” the corresponding paths in G.

Path graphs were investigated by Broersma and Hoede in [2] as a natural gen-
eralization of line graphs, since P;(G) is the line graph L(G) of G (for further
connections to line graphs see [6]). Traversability of Pe-path graphs is studied in
[9], and a characterization of Py-path graphs is given in [2] and [7]. Distance prop-
erties of path graphs are studied in [1], [3] and [5], and in [4] graphs with connected
Ps-path graphs are characterized.
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When a new function on graphs appears, one of the very first problems is to
determine the fixed points of the function, i.e., graphs that are isomorphic to their
images. It is well known (and trivial to prove) that a connected graph G is isomor-
phic to its line graph L(G) if and only if G is a cycle.

In [2] it is proved that a connected graph G is isomorphic to its Py-path graph
if and only if G is a cycle. We remark that Pi(G) is not necessarily a connected
graph if G is connected and k > 2. However, slight modifications of the proof in [2]
give rise to the following theorem:

Theorem A. Let G be a graph isomorphic to Po(G). Then each component of G
s a cycle.

However, even stronger theorem follows from [5]. Let P{(G) denote the i-iterated
Py-path graph of G, i.e., Pi(G) = Py(P;~'(G)) if i > 0, and P}(G) = G. We have

Theorem B. Let G be a graph and n a number, n > 1, such that G is isomorphic
to P(G). Then each component of G is a cycle.

By now, only a little is known about Pg-path graphs for £ > 3. In [8] Li and
Zhao proved the following theorem:

Theorem C. Let G be a connected graph isomorphic to P3(G). Then G is a cycle
of length greater than or equal to 4.

In this paper we generalize Theorem C to an analogue of Theorem A for Ps-path
graphs:

Theorem 1. Let G be a graph isomorphic to Ps(G). Then each component of G
1s a cycle of length greater than or equal to 4.

In fact, we prove more. We prove an analogue of Theorem B for Ps-path graphs:

Theorem 2. Let G be a graph and n a number, n > 1, such that G is isomorphic
to P3(G). Then each component of G is a cycle of length greater than or equal to

4.

We remark that the proof of Theorem C in [8] is analogous to the proof of Theo-
rem A (in a weaker form) in [2], and since it is based on some counting arguments,
it is not clear how to extend it to the proof of Theorem 2. In fact, our approach to
the problem is completely different.

At present, we are not able to generalize Theorem 1 to Pg-path graphs for k£ > 4.
The problem seems to be too complicated in general; for a solution for graphs in
which every component contains a ”large” cycle see Lemma 3. Thus, for £k > 4 it
may be useful to start with trees, see also Corollary 6. However, even for trees the
problem appears to be hard. In this connection we pose the following

Problem. Does there exist a tree T and a number k, k > 4, such that Pi(T) is a
nonempty forest for every ¢ > 07

If such a tree does not exist, then Px(G) 2 G for every number k and a forest G.
(We remark that the problem is trivial for £ = 1; for k = 2 it is solved negatively
in [5]; and for k = 3 it is solved negatively by Lemma 7.)

In the next two sections we prove Theorem 2. In Section 2 we present some
general results for P-path graphs when k£ > 2, and Section 3 is devoted to Ps-path
graphs of trees.
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2. GENERAL RESULTS

We use standard graph-theoretic notation. Let G be a graph. The vertex set
and the edge set of G, respectively, are denoted by V(G) and E(G). If v is a vertex
of G then degg(v) denotes the degree of v in G. For two subgraphs, H; and Ho
of G, we denote by H; U Hy the union of H; and Hs in GG, and by H; N Hy their
intersection. A path and a cycle, respectively, of length [ are denoted by P, and Cj.

For easier handling of paths of length k in G (i.e., the vertices of P;(G)) we make
the following agreement. We denote the vertices of Px(G) (as well as the vertices
of G) by small letters a, b, ..., while the corresponding paths of length k in G are
denoted by capital letters A, B, ... . It means that if A is a path of length £ in G
and a is a vertex in Py (G), then a must be the vertex corresponding to the path A.

Throughout this section, the symbol k is used for the length of paths producing
the path graph. I.e., we consider here only Px-path graphs, ¥ > 2. By a large cycle
we mean a cycle of length greater than k. A cycle whose length does not exceed k
is a small cycle.

Lemma 3. Let G be a graph such that P(G) = G for some n > 1 and k > 2.
Then every component of G containing a large cycle is isomorphic to a single cycle.

Proof. If C is a large cycle then Py(C) = C, and hence P (C) = C, too. As
Pl(G) 2 G, all large cycles in P’(G) are images of large cycles in G.

If a and b are adjacent vertices in Px(G), then A and B share a path of length
k—1. This implies that if C is a large cycle in G, then Py (C) does not contain a
chord in Pj(G), and hence, PJ*(C') does not contain a chord in PJ*(G), either. Since
the number of large cycles in G is equal to the number of large cycles in P;*(G), no
large cycle contains a chord in G.

Suppose that there is a large cycle in G with a vertex incident to an edge outside
this cycle. For every large cycle C, let Ig(C) denote the total number of edges
outside C that are incident to a vertex of C'. As C does not contain a chord,
ka(G)(Pk(C)) =2- Ig(C), and IP,:”(G)(P]?(C)) =2". Ig(C). Let I(G) denote the
maximum value of I¢(C), where C is a large cycle in G. Then I(P(G)) =2"-1(G).
Since I(G) > 0, P}(G) is not isomorphic to G. O

Lemma 4. Every small cycle in Py(G) has an even length.

Proof. Let C = (aj,as2,...,a;) be a small cycle of length [ in P,(G), l < k. If u
and v are adjacent vertices in Py (G), then U and V share a path of length k£—1.
Since [ < k, Ay, Ag,..., A; share a path P of length ¢ > k — (I—-1) > 1 in G. Let
P= (p07p1a s 7pt)'

Assume that A; = (a1,0,81,1,---,81%),---, A1 = (a1,0,01,1,- - -, a1 %) are denoted
so that for every ¢, 1 <4 <, we have 9 < %¢, where a; ;, = po and a;;, = pt. Then
io and (i+1)o have different parity, 1 < ¢ <I. As (a1,as,...,a;) forms a cycle, 1
and [y have different parity, too, and hence [ is even. [

We remark that Lemma 3 and Lemma 4 reduce the examination of graphs G for
which PJ'(G) & G, to graphs without large cycles and without odd small cycles.
Hence, to complete the proof of Theorem 2 it remains to study forests.

Definition. A tree V; is obtained from a claw K, 3 subdividing each edge of K 3
by t—1 vertices, see Figure 1 for V5. A tree Xy, ;, is obtained from two paths of
length 2t; central vertices of which are joined by a path of length ¢5, see Figure 2
for X1 2 and Figure 3 for Xy 1.
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It is easy to see that Py(Vi) = Csi and Pr(Xyk—¢) contains Cy, 1 < t < k.
Thus, P-path graphs of trees containing a copy of Vi or Xy —; contain cycles. The
next lemma shows a converse.

Lemma 5. IfT is a tree such that Py(T') contains a cycle, then T contains either
\yk; Or)-(t,k—t; 1 S t<k.

Proof. Only for this proof we define the notion of a turning path (see also [1]). Let
(zo,Z1,...,x1—1) be a closed walk of length [ in Pg(G). Then for every i, 0 < i < [,
the edges of X;_; N X; form a path of length £—1 (the indices are modulo /). A
path X; is a turning path if and only if the edges of X;_1 N X; N X;4; form a path
of length k—1, too.

Let T be a tree, and let C' = (ag,a1,...,a;-1) be a cycle of length [ in Py(T).
Since T is a tree, there are at least two turning paths among Ag, Ay, ..., A;_1. Let
A;, and A;, be turning paths such that ¢ = [(i2—i1) mod [] is the smallest possible.
Then A;, UA;, 41 U---UA,, forms a path of length k+t (the indices are modulo 7).

Ift >k, then A;, _UA; _¢y1U---UA,; forms another path of length ¢+, since
Ai,—t41,Aiy—t+2, ..., Ai,—1 are not turning paths. As A;, 1 # Ai, 11, T contains
V.

Thus, suppose that ¢ < k. Since t < k, A;, and A;, share a path P = (py,
P1y--.,prr) of length I” = k —¢t. Assume that A;, = (bs,bt—1,-..,b1,D00,01,---,01)
and A;, = (po,P1,.--,P1,C1,C2y-.-,¢). Then A; UA; +1U---UA;, = (be, bp—1, ...,
b1, P05 P1y---,DlsC1,Cy ..., C). Since t is the smallest possible distance between
vertices of C corresponding to turning paths, we have A;, tUA;, 41U UA; =
(bt, bt—l; ey bl,po,pl, ey Pry dl, dg, ey dt), where dl 75 C1, and Ai2 UAi2+1 U---u
Ayt = (€t,€4—1,- - ,€1,P0, D1y« - D1/, C1,C2, - .., Ct), Where ey # by. As T is a tree
and ' =k — ¢, T contains X; p—¢. O

By Lemma 5 and the note before it, we have

Corollary 6. Let T be a tree. Then Py(T) contains a cycle if and only if T
contains either Vi, or Xy ¢, 1 <t < k.

3. P3-PATH GRAPHS

Definition. A caterpillar is a tree T with a path P = (vg,va,...,v;), such that
the eccentricity of v; is at most 2 in the component of T' — E(P) containing v;,
0 <i<Il. A 3-caterpillar T is a caterpillar with a path P = (v, va,...,vs,) such
that degr(v;) = 2if 0 <4 < 3r and ¢ # 3j. The vertices vs; are called the basic
vertices of a 3-caterpillar, 0 < 7 < r.
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Figure 4

In Figure 4 we have a 3-caterpillar T' with 4 basic vertices vg, v3, vg and vg. We
remark that usually, the term caterpillar is used for a bit different tree. However, in
this paper we use this notion only for the graph defined in the preceding definition.

Let G be a forest such that P§'(G) = G for some n > 1. By Lemma 4, every cycle
in P3(G) is a large cycle. Thus, G does not contain V3, X1 2 or X2 1 by Corollary 6,
as otherwise P§(G) contains a large cycle. In particular, since G does not contain
Vs, it is a disjoint union of caterpillars.

Lemma 7. LetT be a caterpillar such that Pi(T) is a forest for everyi > 0. Then
there is j such that Py (T) is an empty graph.

Proof. Let T be a caterpillar such that P:(T) does not contain a cycle for every
¢ > 0. If the diameter of T is at most 4, then P3(7T") does not contain a path of
length 3 (recall that T does not contain Xi 2), so that PZ(T) is an empty graph.
Hence, assume that the diameter of T is at least 5.

If G is a tree, then at most one nontrivial component of P5(G) is different from
a complete bipartite graph, see [4, Corollary 5]. Since the diameter of a complete
bipartite graph is at most two, at most one nontrivial component of P3(T) is a
caterpillar containing a path of length 3. Hence, in what follows it is enough to
consider this unique "large” caterpillar of P3(G).

Let T be a 3-caterpillar with a path P = (vg, vy, ..., vs,) denoted as in the defi-
nition above. Then T has exactly r+1 basic vertices. Let V = (v;, vi41, Vit+2, Vi+3),
0 < i < 3r—3. Then the (large) caterpillar T of P5(T) is a 3-caterpillar with a
path P’ = (v], v, ..., v%,_3) with exactly r basic vertices, see Figure 4. Hence, the
caterpillar of P§(T) is a 3-caterpillar with a unique basic vertex, so that Pj>(T)
is an empty graph.

To prove the lemma it is enough to concentrate on caterpillars that are not 3-
caterpillars. These caterpillars 7 contain a pair of vertices u] and u3 at a distance
either 3j + 1 or 3j + 2 such that degp~(u}) > 3 and degr«(u3) > 3. Moreover,
if the distance from u] to u3 is 35 + 1 and QQ* is a path joining u] with w3, then
the eccentricity of ) in the component of T* — E(Q*) containing u} is at least 2,
i € {1,2}. In what follows consider the caterpillar T of Pg (T*). By our assumption,
T is not a 3-caterpillar and it contains two vertices u; and us at a distance either
1 or 2 such that degr(u1) > 3 and degr(us) > 3. Moreover, if ujus € E(G) then
the eccentricity of u; in the component of T' — {ujus} containing u; is at least 2,
ie{1,2}.

If u; and uy have distance 2 then T' contains X 2, so that P3(T') contains a large
cycle.

Now consider a caterpillar T with ujus € E(T). Let Co(u;) and Co(usz) be
components of T — {ujuy} containing u; and usg, respectively. As mentioned above,
the eccentricities of u; and us in these components are at least 2. However, if both
of them exceed 2, then P3(T') contains X1 .

Thus, suppose that the eccentricity of u; in Co(uq) is exactly 2. Then Co(uq)
consists of at most 2 paths of length 2 rooted in u; and of some edges incident with
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u1. Otherwise T contains X1 o or P3(T') contains V3. Moreover, as iterated Ps-path
graphs of T' do not contain X 9, the distance from wus to u is 37 if u € V(Co(usz))
and degp(u) > 3.

We distinguish two cases.

Case 1: There are exactly two paths of length 2 rooted in u;.

If the eccentricity of ugy is at least 5 in Co(ug), then P3(T') contains V3. On the
other hand, if the eccentricity of us is at most 4 in Co(uz), then the caterpillar T”
of P3(T) is a 3-caterpillar, or P3(T) contains X 3, see Figure 5. (We remark that
U' = (u1,uz,us, ug). Extra edges that are possibly in T' or in T”, are represented
by halfedges in Figure 5.)

Al o

U1 U2 U3z Ug

Figure 5

Uy Uz U3 Ug Us Us U7 ubh uf

Figure 6

Case 2: There is exactly one path of length 2 rooted in u;.

Let (ug,us,-..,ux) be a longest path of Co(usy) rooted in us. Denote by T" the
caterpillar of P3(T), U} = (u1,us2,us,us) and U; = (ug,us, uq, us) (if us exists),
see Figure 6. Let Co(u}) and Co(ub) be defined analogously to Co(u1) and Co(us)
above.

If the eccentricity of us is at least 6 in Co(us) (i.e., if & > 8), then the eccentricities
of u} and u) are greater than 2 in Co(u}) and Co(u}), respectively. Hence, PZ(T)
contains X1 2, a contradiction.

If the eccentricity of us is at most 2 in Co(uz) (i.e., if & = 4), then T" is a
3-caterpillar (recall that T’ does not contain X1 2).

Let u be a vertex adjacent to us, u # ug, such that degr(u) = 2, see Figure 6.
If kK = 7 then T" is of the type already solved in Case 1, and if 5 < k£ < 6 then
T’ is of the type from Case 2 and all (but one) neighbours of u), have degree 1 in
Co(ub). Hence, we may assume that all neighbours of us (except ug) have degree 1
in Co(uz).

Now if £ = 7 then T' is of the type from Case 2 with the eccentricity of u,
exactly 3 in Co(u}), and if 5 < k < 6 then 7" is a 3-caterpillar. [

By Lemma 7, for every caterpillar T there is a number ¢ such that P¢(T) is an
empty graph or Pi(G) contains a large cycle. Thus, for every n, n > 1, we have
PG) 2 G if G is a forest, which completes the proof of Theorem 2.
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