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HISTORIES IN ITERATED LINE GRAPHS

Abstract. We survey the using of history, that is a useful tool for count-
ing the distances in iterated line digraphs, iterated line graphs and iter-
ated path graphs.

1. Introduction

This paper is devoted to the utilizying the notion of history in various metric
tasks. History appeared in a natural way when we wished to determine the distances
in iterated line graphs. The method of using the history was extremely powerfull in
examining the radius of iterated line graphs, where it has brought highly nontrivial
results.

Let T" be the class of all graphs (digraphs), and let F' be a mapping F': ' —» T'.
For GeTl and+=0,1,2,... we define

; _JG if i =0;
F(@) = { F(Fi—Y(@)) ifi>0.

Considering the sequence
G,F(G),F*(G),...,FY(Q),...

one can ask how the parameters of F*(G) depend on that of G and i. To solve
problems of this type it is useful to recognize the structure of F*(G) (or at least
some features of F*(G@)) already in G. For this purpose we introduced the concept
of history, which enabled us to consider vertices of F*(G) as subgraphs of G, if F
is the line digraph mapping, line graph mapping or the P;-path graph mapping.
With the help of history we are able to count the distances in F*(G) already in G.
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We remark that the notion of history was originally developed for line graphs,
where it has the largest applications. Its simplifying was later used for line di-
graphs, although here the notion is trivial and it cannot bring much of light into
the problematic. At present, a generalization of history is developed for Ps-path
graphs, but here the work is not finished yet, and some problems remain unsolved.

Throughout the paper, dg(u,v) denotes the distance from u to v in G, V(G)
denotes the vertex set of G, and E(G) denotes the edge (or arc) set of G.

The outline of the paper is as follows. In section 2 we consider line digraphs and
section 3 is devoted to line graphs. Path graphs, that generalize line graphs, are
considered in section 4.

2. Iterated line digraphs

Let D be a digraph, i.e., a directed graph without multiple arcs. By L(D) we
denote the line digraph of D. The vertices of L(D) are just the arcs of D, and
two vertices of L(D), i.e. the arcs of D, say uv and zy, are joined by an arc in L(D)
if and only if v = .

As stated above, each vertex of L(D) can be viewed as a trail of length one in
D. Since only adjacent vertices of L(D) give rise to a vertex in L?(D), each vertex
of L?(D) can be viewed as a trail of length two in D. Further on, considering a
"footprint” of a vertex of L*(D) in L*~J(D), 0 < j < 4, we obtain the following
definition.

Definition. Let D be a digraph and let u be a vertex in L(D).
1° The 0-history of u, B%(u), is simply (u).
2° If 0 < j <4, the j-history of v, BJ(u), is a sequence of vertices (zq,x1, T2,
.., x;) of L*77(D), such that (zoz1,z122,...,zj_12;) is the (j—1)-history
of u.

Clearly, the sequence (xg, z1,...,2;) determines a trail in Li=I(D), and there is
a one-to-one correspondence between the j-histories (i.e., the trails of length j in
L*=I(D)) and the vertices in L*(D). This one-to-one correspondence yields some
applications, in which iterated line digraphs appear. Let K2 be a complete digraph
with loops on two vertices, say 0 and 1. Then L!(K3) is the i-dimensional de Bruijn
digraph, as one can see from the correspondence between the i-histories (i.e., the 0-
1 sequences of length i) and the vertices in L!(K>), see also [9, p. 483]. We remark
that de Bruijn digraphs are used as the underlying digraphs for interconnection
networks. The following trivial lemma enables us to count distances in L*(D) using
the distances in D.

Lemma 1 [4]. Let D be a digraph, and let u and v be vertices in L*(D). Let
To,T1,---,Tn be a shortest trail in D (if such exists) such that (zo,z1,...,%;) =
B'(u) and (Tp—_iy, Tn_i+1,---,%n) = B"(v). Then

dri(py(u,v) =n —1i.

Moreover, dripy(u,v) = oo if there is no required trail in D.

Histories in iterated line digraphs were used for determining the behavior of the
radius. However, there are more definitions of radius in digraphs and we consider
only three of them.



Let D be a digraph, and let u be a vertex in D. Then:

out-eccentricity of u is e} (u) = max{dp(u,v) : v € V(D)};
in-eccentricity of u is ep(u) = max{dp(v,u): v e V(D)};
eccentricity of u is ep(u) = max{e},(u), ey (u)}-

Using various eccentricities we obtain various radii and various centers. The out-
radius 7 (D) (in-radius r~ (D), radius (D)) is the minimum value of e}, (u)
(ep(u), ep(u)) over all vertices u of D; and the out-center C*(D) (in-center
C~ (D), center C (D)) is the subgraph of D induced by vertices with the minimum
out-eccentricity (in-eccentricity, eccentricity). We remark that the maximum value
of out-eccentricity, in-eccentricity and eccentricity are equal and they are known as
the diameter of D, diam(D).

Let D' arise from D by reversing the orientation of all arcs. Then ep, (u) =
e} (u) for every vertex u in D, and hence, 7+ (D) = r—(D’). Moreover, the arcs of
C~(D’) are just reversed arcs of CT (D). This observation enables us to restrict
the considerations to radii 7™ and 7, and to centers C* and C, only.

When considering the out-radius, it is useful to divide digraphs into three classes,
according the following theorem (see [1, Theorem 10.7.2] and [1, Theorem 10.9.1]):

Theorem 2. Let D be a digraph.
(i) If D has no directed cycles, then L*(D) is an empty digraph for all i suffi-
ciently large.
(ii) If D has directed cycles, no two of which are joined by a directed path, then
for all sufficiently large values of i, each component of L*(D) has at most
one directed cycle. Moreover, there are numbers ip and jp such that Li(D)
is isomorphic to L*TIP (D), for everyi > ip.
(iii) If D has two directed cycles joined by a directed path (possibly of length 0),
then
lim |V(LY(D))| = oc.
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Using the notion of history it is possible to prove:

Theorem 3 [4]. Let D be a digraph, no two of whose cycles are joined by a
directed path, and assume that D contains at least one directed cycle. Then there
are numbers ip and tp, such that for every i > ip we have either

rt(LYD))=tp  or rT(LYD))= .

Theorem 4 [4]. Let D be a digraph containing two directed cycles joined by a
directed path (possibly of length 0). Then either there are ip and tp such that
rHL{(D)) = i +1p
for every i > ip, or there is ip such that for every i > ip we have
rT (LY (D)) = oo.

Since r(D) < oo if and only if D is strongly connected, the following theorem
characterizes the behavior of radius in iterated line digraphs.



Theorem 5 [4]. Let D be a nontrivial strongly connected digraph different from a
directed cycle. Then there are tp and t’y such that for every i > 0 we have

i+tp < r(LYD)) <i+th.

We outline here the proof of the upper bound of Theorem 5. Let u be a central
vertex in D, and let C be a directed cycle containing u (one can take a shortest
one), C = (u,as,as,...,a;,u). The length of C is [. Then there is a vertex z! in
L'(D) such that B'(z') = (u,as,...,a;,u). By Lemma 1 we have

r(LY(D)) < eripy(z') <ep(u) +1=r(D)+1.

Analogously, if j > 1, then r(L7*(D)) < j-l+7(D) (take a trail going j times around
C for B! (z7)). Since r(H) < r(L(H)) holds for every nontrivial strongly connected
digraph H, see [4], we have

r(LY(D)) < r(LU*DYD)) < (j+1)l + r(D)

for all 4, jl < i < (j+1)I. Hence, r(L{(D)) < i+ (r(D)+l) for every i > 0.

We remark that if D is a strongly connected digraph, then diam(L(D)) =
diam(D) + 1, see [2]. Hence, diam(L*(D)) = diam(D) + i for every i > 0.

Now we turn our attention to centers in iterated line digraphs. It is known that
each (undirected) graph G can serve as a center of some graph. Just take four
vertices, say ai, as, by and by, outside of G, join a; and by to all vertices in GG, add
two edges ajag and by by, and denote the resulting graph by H. Then C(H) = G. In
H the vertices as and bs have constant distance (two) from every vertex u of G, and
this distance is the largest one, a vertex u can achieve. Moreover, the distance from
every vertex of V(H)—V(G) to either as or bs is larger than two. This construction
can be modified to iterated line digraphs to obtain the following results:

Theorem 6 [4]. Let D be a nontrivial strongly connected digraph. Then there is
a digraph H, H O D, such that for every ¢ > 0 we have

CT(L'(H)) = L'(D).

Theorem 7 [4]. Let D be a digraph and let 5 > 0. If L7(D) is not empty then
there is a digraph H, H O D, such that for every i, 0 <1 < j, we have

C(L*(H)) = L*(D).

Theorems 6 and 7 are, in a sense, best possible. In [4] it is shown that some line
digraphs (that are not strongly connected, of course) are not out-centers of any line
digraph. Further on, there are digraphs D, such that there does not exist a digraph
H, H D D, for which C(L{(D)) = L¥(D) for every i > 0, see [4].

We describe the digraph H of Theorem 6. Let d = max{2, diam(D)}, and let

V(H) = V(D) U {al, bl, ...,04, bd};
E(H)= E(D)U{uay,ub; : uve V(D)}U
U{ajajt1,bibj11: 1 <5 <d-1}U{agag—1,bqbs—1},



see Figure 1. Then vertices z* and y® in L*(H), B*(z") = (ad, @d—1,0d, Gd—1,---)
and Bi(y!) = (bg,bq—1,bq,b4_1,-..), play the role of as and by in the graph H
described above.

The digraph H of Theorem 7 is constructed in a similar way.

Figure 1

3. Iterated line graphs

Let G be a graph. The line graph of G, L(G), is a graph whose vertices are
the edges of G. Two vertices are adjacent in L(G) if and only if the corresponding
edges are adjacent in G.

Clearly, each vertex in L(G) can be viewed as a trail of length one in G. Moreover,
analogously as in iterated line digraphs, each vertex in L2(G) can be viewed as a
trail of length two in G. However, there are vertices in L3(G) which cannot be
represented by trails of length three in G. In fact, it is not easy to find ”something”
in G, which is in one-to-one correspondence with the vertices in L*(G) if i > 3. But
we do not need an one-to-one correspondence, if the ”"something” enables us to
count distances in L*(G) correctly.

Definition. Let G be a graph, and let u be a vertex in L*(G).

1° The O-history of u, B%(u), is a subgraph of L*(G) formed by unique vertex
u.

2° If 0 < j < i, the j-history of u, B’(u), is a subgraph of L=7(G). Since
every vertex of L*~7T1(G) corresponds to an edge in L*~7(G), the vertices of
B7~1(u) correspond to edges in L*~7(G) and this edges form the j-history
of u.

Let G be a claw, i.e., the complete bipartite graph K 3. Then all L(G), L*(G),
L3(G),... are triangles. If u is any vertex of L3(G), then B3(u) = G. Hence,
there is not one-to-one correspondence between the vertices in L3(G) and their
3-histories.

There arises a natural question. Which subgraphs of G form an ¢-history of a
vertex of L*(G)? The next lemma gives a complete answer.

Lemma 8 [8]. Let G be a graph, and let H be a subgraph of G. Then H is an
i-history of a vertez in L*(GQ) if and only if H is a connected graph with at most i
edges, distinct from any path with less than i edges.

Let H and J be two subgraphs of G. By their distance dg(H, J) we mean the
length of a shortest path in G joining a vertex of H to a vertex in J. The following
lemma enables us to count distances between vertices in iterated line graphs.



Lemma 9 [8]. Let G be a graph, and let u and v be distinct vertices in L*(G).
Then
(D1) drie)(u,v) = i+ dg(B'(u), B*(v)) if the i-histories of u and v are edge-
disjoint;
(D2) dpi(e)(u,v) = max{t : t-histories of u and v are edge-disjoint} if i-histories]]
of u and v share an edge in common.

Lemmas 8 and 9 have applications in determining the diameter, radius and the
center in iterated line graphs. Let G be a graph and let u be a vertex in G. Then

eccentricity of u is eq(u) = max{dg(u,v) : v € V(G)}.

The diameter diam(G) is the maximum value of eg(u), and the radius 7(G) is the
minimum value of eg(u), respectively, over all vertices u of G. The vertices with
the minimum eccentricity induce the center C(G) of G.

For iterated line graphs there is an analogue of Theorem 2.

Assertion 10 [8]. Let G be a connected graph.
(i) If G is a path of length j, then L*(D) is an empty graph for all i > j.
(ii) If G is a cycle, then each iterated line graph of G is isomorphic to the
original cycle; and if G is a claw K, 3 then each iterated line graph of G is
a triangle.
(iii) If G is a connected graph different from a path, cycle and a claw, then

lim |V(LY(Q))| = oo.
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Thus, it is enough to consider connected graphs different from a path, cycle and a
claw. Such graphs G will be called prolific, since each two members of the sequence
G, L(G),L*(G),... are distinct. Now with the notion of history it is possible to
prove:

Theorem 11 [8]. Let G be a prolific graph. Then there are i and tg such that
for every i > ig we have .
diam(L'(G)) =i+ tg-

Theorem 12 [8]. Let G be a connected noncomplete graph with the minimum
degree at least three. Then for every i > 1 we have

i + diam(G) — 2 < diam(LY(Q)) < i + diam(G).

In the proof of Theorem 11 it is shown that L3(G) contains two edge-disjoint
claws. This claws are i-histories of vertices of L31(G) for i > 3, by Lemma 8.
Then Lemma 9 completes the proof.

The proof of Theorem 12 is based on the same idea.

Theorem 13 [8]. Let G be a prolific graph. Then there are tg and ty such that
for every i > 0 we have

(i = V2log i) +ta < r(14(G)) < (i — V/2logy1) + 1.



The proof of Theorem 13 is a bit more complicated than the previous ones, since
it is important to find a central vertex in L‘(G) for large i. Clearly, a central
vertex, say u, in L*(G) has a "large” i-history in G. The best situation appears
when Bi(u) share an edge with every other i-history, by Lemma 9. Let u®, u!, u2, ...
be a sequence of vertices such that ¢ is a central vertex in L*(G). By i; we denote
the first index such that B%~J(u%) share an edge with every (i;—j)-history of a
vertex of L% (G). (Thus, B%~J(u%) is a "large” subgraph of L(G).) In general,
by Lemma 9 we have

r(LP(G)) =i —1, r(LTNG) =ip, ... r(LPTHG)) =i1-2,
r(L(@) =i =2, r(L**HG) =i —1, ... r(L®7NG)) =123,
r(L*(G)) =iy — 3, r(L*TH(Q)) =i -2,

It means that r(L*(Q)) = r(L*"Y(G)) + 1 for every i > iy, except i = i;, where
r(LY(G)) = r(L*"*(G)). Hence, it remains to compute ij, j > 0. Since LI(G) —
Bii—J(u%) is a linear forest, by Lemmas 8 and 9, we have

VILIFHG)| = V(I (@) < ij = j < [V(LITHG))

(recall that |V (L’ +1(G))| = |[E(L?(G))|). This two bounds together with the esti-
mation of |V (L{(G))| in [8] give the bounds of Theorem 13.

By Theorems 11 and 13, for every prolific graph G there is a number kg, such
that if i > kg then L!(G) is not a selfcentric graph (i.e., the radius of L‘(Q) is
strictly less than its diameter). Clearly, almost all graphs are prolific. Therefore,
the following result, a proof of which is based on the notion of history, may be
surprising.

Theorem 14 [3]. Leti > 0. Then for almost all graphs G we have
diam(L(G)) = r(LY(G)) =i + 2.

Now we introduce an analogue of Theorems 6 and 7 for iterated line graphs.

Theorem 15 [7]. Let G be a graph and let 0 < j < 2. If L7(G) is not empty then
there i1s a graph H, H O G, such that for every i, 0 <1 < j, we have

C(L'(H)) = L*(G).
Moreover, if G is triangle-free and L*(G) is not empty, then also
C(L}(H)) = L*(G).

Although the proof of Theorem 15 is more complicated than that of Theorem 6,
it is based on the same idea. Theorem 15 is best possible in a sense, since there is a
graph G such that for every i > 3 and any graph H, H D G, we have C(L*(H)) #
LY{(G).

We remark that Theorem 15 characterizes the centers of line graphs, since each
induced subgraph of a line graph is a line graph. It means that G is a center of
some line graph if and only if G is a line graph. However, the center of i-iterated
line graph is not necessary an i-iterated line graph if + > 2. Hence, the problem of
characterizing the centers of i-iterated line graphs remains open for ¢ > 2.



4. Iterated P,-path graphs

Let G be a graph, k£ > 1, and let P be the set of all subgraphs of G which form
a path of length k (i.e., with k+1 vertices). The Py-path graph Py (G) of G has
vertex set P. Let A, B € Py. The vertices of P;(G) that correspond to A and B
are joined by an edge in Py (G) if and only if the edges of AN B form a path of
length £—1 and A U B is either a path of length k+1 or a cycle of length k+1.

Path graphs generalize line graphs, as P;(G) is a line graph of G. However, there
is a stronger connection between path graphs and the line graphs. In what follows,
the vertices of a path graph P,(G) (as well as the vertices of G) are denoted by
small letters a, b, ..., while the corresponding paths of length k£ in G we denote
by capital letters A, B, ... It means that if A is a path of length k£ in G and a is a
vertex in Py (G), then a must be the vertex corresponding to the path A. We have
the following theorem:

Theorem 16 [6]. Let G be a graph and k > 2. Then there is a unique embedding
¢ : P(G) = L*(G) such that for every vertex u in Px(G), the path U and the
k-history B*(o(u)), we have

U = B*(p(u)).

It means that the Py-path graph Py (G) is a subgraph of L*(G), and there is a
unique embedding of Py (G) into L¥(G) preserving histories.

Now we turn our attention to histories in iterated path graphs. Since using the
histories we wish to count distances between vertices in P (G) already in G, it is
not enough to consider the ”footprint” of a vertex in P¢(G) as a subgraph of G. In
these subgraphs we need to distinguish special vertices, called out-vertices.

Definition. Let G be a graph, k > 1, and let u be a vertex in P,i(G).

1° The 0-history of u, B (u), is a subgraph of P}(G) formed by unique vertex
u, and this vertex is defined as out-vertex of Bp(u).

2° If 0 < 5 < 4, the j-history of u, B,Z;(u), is a subgraph of P,i_j (G). Assume
that V(B,Z_l(u)) = {ai,a9,...,a;}. The vertices and edges of Bi(u) are
the vertices and edges of Aq, As,..., A;. Moreover, if a;,,a;,,...,aq; are
the out-vertices of B,Z_l(u), then the endvertices of A4; ,A;,,...,A; are
defined as out-vertices of B (u).

We remark, that if u is a vertex in the i-iterated line graph of G, then all vertices
of B](u) are out-vertices, 0 < j < 4. In Figure 2 we picture all 2-histories of vertices
in P#(G). In these pictures, out-vertices are painted black.
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Figure 2

At present, we have not a characterization of i-histories of vertices in P}(G) for
arbitrary ¢ if £ > 2. However, if £k = 2, we are able to count distances between



vertices in P§(G) using their i-histories. Let G be a graph, and let u and v be
vertices in Pi(G). Then dj(u, v) denotes the shortest distance between out-vertices
of BJ(u) and out-vertices of B3(v) in Py~ (G).
Lemma 17 [5]. Let G be a graph, and let u and v be non-isolated vertices in
Pi(G). Moreover, let Bi(u) and Bi(v) be edge-disjoint j-histories, 0 < j < i.
Then _

dpi(a)(u, v) = 2j + dg(u,v).

Lemma 17 was used for determining the diameter in iterated Ps-path graphs.
However, since P»(G) may be disconnected even if G is a connected graph, we
consider the diameter of such a component of Pi(G) which contains an edge (if it
exists). In [5] it is proved that at most one component of P»(G) contains an edge
if G is connected.

First we introduce some definitions. By G;, j > 1, we denote a tree composed
of two paths of length two, central vertices of which are joined by a path of length
2j—1. A dragon is a unicyclic graph composed of an even cycle C and a set of
vertices, each joined by an edge to some vertex of C. Moreover, each pair of vertices
of a dragon that have degree at least three, has an even distance (see Figure 3 for a
dragon with cycle of length 8). Broken dragon is a tree composed of a diametric
path 7 and a set of vertices, each joined by an edge to some vertex of 7. Moreover,
each pair of vertices of a broken dragon that have degree at least three, has an even
distance (see Figure 5 for a broken dragon with diametric path of length 9). A
dragon’s egg is a tree composed of a claw K; 3 in which each edge was subdivided
by one vertex, and a set of vertices, each joined by an edge either to the central
vertex or to some endvertex of the subdivided claw (see Figure 4 for a dragon’s egg).
If a connected graph G is different from a cycle, dragon, broken dragon, dragon’s
egg and the graph G, j > 1, then G is called prolific.

We have an analogue of Assertion 10 and Theorem 11 for iterated P;-path graphs.

Theorem 18 [5]. Let G be a graph with a unique nontrivial component. Denote
by H; a nontrivial component of P2j (G) (if it exists), j > 0.
(i) If G is a broken dragon, then there is ig such that for every i > ig the
graph Pi(G) is empty.
(2) If G is a cycle, or a dragon, dragon’s egg, or the graph G, j > 1, then there
are ig and tg such that for every i > ig we have

dzam(Hz) = tg.

(3) If G is a prolific graph, then there are i and tg such that for every i > ig
we have

diam(H;) = 2i + tg.




Figure 3 Figure 4

broken dragon
O O

Figure 5

We remark that lim |V (H;)| = oo even if G is a dragon different from a cycle.
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In the proof of Theorem 18 we used the fact that Pi(G) contains two edge-

disjoint cycles, if G is a prolific graph and ¢ is large enough. This cycles are
histories of vertices of P2H'J (G) for large j. Thus, Lemma 17 and the inequality
diam(H;) < diam(H;_1) + 2, see [5], give the result (iii) of Theorem 18.
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