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ABsTRACT. If G is a graph, then its path graph, Py (G), has vertex set identical with
the set of paths of length k in G, with two vertices adjacent in Py (G) if and only if
the corresponding paths are ” consecutive” in G. We prove that every path graph can
serve as a center of some path graph. Moreover, we show that the class of centers of
path graphs is strictly larger than the class of path graphs.
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INTRODUCTION AND RESULTS

Let G be a graph, k¥ > 1, and let P; be the set of all subgraphs of G which
form a path of length k (i.e., with k+1 vertices). The path graph Py (G) of G has
vertex set P. Let A, B € Px. The vertices of P;(G) that correspond to A and B
are joined by an edge in P, (G) if and only if the edges of AN B form a path on &
vertices and A U B is either a path of length k41 or a cycle of length k+1.

Path graphs were investigated by Broersma and Hoede in [2], as a natural gen-
eralization of line graphs (observe that P;(G) is a line graph of G). In [5] the
connectivity of path graphs is studied, and Belan and Jurica [1] bounded the diam-
eter of path graphs. The study of path graphs has concentrated mostly on P,-path
graphs. In [2] and [10] Py-path graphs are characterized, Yu in [12] studied the
traversability of Pe-path graphs, and [6] is devoted to diameter in iterated P-path
graphs.

By dg(u,v) we denote the distance between the vertices u and v in G. The
eccentricity, eg(u), of the vertex u is the maximum dg(u,v) taken over all vertices
v of G. The radius of a graph G is the minimum eccentricity of a vertex in G,
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and the center, C(G), is the subgraph of G induced by vertices whose eccentricity
equals the radius. It is known that each graph G can be the center of some graph
H, where |V(H)| < |V(G)|+4 (see [3, p.41]). Centers of special graphs are studied
in several papers. Clearly, the center of a tree consists of either a single vertex
or a pair of adjacent vertices. All seven central subgraphs admissible in maximal
outerplanar graphs were listed by Proskurowski [11]. Laskar and Shier [9] studied
centers in chordal graphs. In [8] it is shown that every line graph can be a center
of a line graph. This characterizes the centers in line graphs, as every induced
subgraph of a line graph is a line graph. A survey on centers can be found in [3].
In this paper we study centers in path graphs. We prove:

Theorem 1. Let k > 1 and let G be a graph, such that Py(G) contains at least one
vertex. Then there is a supergraph H such that C(H) = G and C(Px(H)) = Px(QG).

We remark that there is a correspondence between the vertices of Pi(G) and
those of k-iterated line graph of G, see [4]. This correspondence implies that Px(G)
is a subgraph of L*(G) (i.e., of k-iterated line graph of G). Although Py(G) is
a center of Py(H) for some supergraph H of G for arbitrary k¥ and G (such that
Pi(G) is not empty), by Theorem 1, there are graphs G such that L¥(G) is not a
center of L¥(H) for any supergraph H of G and k > 3, see [7, Theorem 4].

By Theorem 1, each Py-path graph can be a center of some Pg-path graph.
However, this result does not characterize the centers of Pg-path graphs if k£ > 2,
since not every induced subgraph of Pj-path graph is a Pg-path graph. For every
k > 2 we find graphs G* and H*, such that G* is the center of Py(H¥), but G is
not a Pg-path graph. Thus, we prove:

Theorem 2. Ifk > 2, then the class of centers of Px-path graphs is strictly larger
than the class of Py-path graphs.

We remark that it is not trivial to determine whether a given graph is a Pg-path
graph at present, as only P»-path graphs have been characterized so far.

One can ask whether every induced subgraph of a P-path graph can be a center
of Py-path graph. At present we do not know an answer in general. However,
for kK = 2 we have a graph, that is an induced subgraph of P»-path graph, but
cannot serve as a center of P,-path graph. We conclude this section with two open
problems:

Problem 1. Does there exist for every k > 2 a graph, say F*, such that F* is an
induced subgraph of a Pi-path graph, but F¥ cannot be a center of Py-path graph?

Problem 2. Characterize the centers of Px-path graphs if k > 2.

PROOFS

The vertices of path graph are adjacent if and only if one can be obtained from
the other by ”shifting” the corresponding paths in G. For easier handling of paths
of length k in G (i.e., the vertices of Px(G)) we adopt the following convention. We
denote the vertices of Px(G) (as well as the vertices of G) by small letters a, b, ...,
while the corresponding paths of length £ in G will be denoted by capital letters
A, B, ... . It means that if A is a path of length k in G and a is a vertex in Pg(G),
then a must be the vertex corresponding to the path A.

Let G be a graph with n vertices, and let s > 1 and ¢ > 3 be two integer
parameters. We construct a supergraph H; ;(G) of G in the following way.
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For every vertex v of G we add a subgraph with 2[(s—1)n + 2 + t] new vertices
and 2[s'n + 1 + t] new edges. Two of the added vertices we denote by z} and yZ.
The vertices z and y} are joined to every vertex of G—{v} by a path of length
s, and they are joined to v by a path of length s+1. Moreover, one extra-path of
length ¢ is glued by one endvertex to z} (the other endvertex is denoted by z0),
and one extra-path of length ¢ is glued by one endvertex to y; (the other endvertex
is denoted by 32), see Figure 1 for the case s = 2 and ¢ = 4. Moreover, the unique
vertex at distance 4 from ¥ (from y0) we denote by ¢ (by y?), i < t. The resulting
graph is denoted by H, +(G).

Figure 1

Lemma 3. Let G be a graph, k > 1, and let Py(G) be a graph with at least one
vertez. Further, let s > ¥ and t > s+ 2k. Then C(Py(H;+(G))) = Pi(G), and
the radius of Py(Hs +(G)) equals s +t.

Proof. We show that every vertex of Py(G) has eccentricity s + ¢ in Py (H;+(G)),
while the remaining vertices have eccentricity at least s +¢ + 1. Denote by H the
graph H,+(G). If v € V(G), then let B, and C, denote the following paths of
length k respectively, (z9,z},...,z%) and (40, 9L, ..., 9%).

Let a be a vertex in Py(G). Then dp, (z)(a,b,) = s+t for arbitrary vertex v
of G, as at least one endvertex of A is different from v. Hence, ep,g)(a) > s+t.
Now assume that A’ is a path of length k£ in H. Let v be a vertex of G, such
that the distance from one endvertex of A’ to z¥, or to 39, is the shortest possible.
Assume that the shortest distance is realized by z0. Then dp,(my(a’,b,) < s+,
since the endvertex of A’ at the shortest distance from z¥ cannot be v. Denote
By = (¢}, 2571 2b72, ... zl7%). Then dp,(m(a,b}) = s+k. If the vertices of A’

form a subset of {«}, 251, 72 ... 20}, then dp, g (b}, a') < t—F, so that

dpk(H)(a, Cl,l) < dpk(H)(CL, b:) + dpk(H)(bZ,al) < (S + k) + (t — ]{7) =s—+t.

However, if the vertices of A’ do not form a subset of {z},zt=1 xt=2 ... z%}, then
dp, (i) (b}, a') < s+k (recall that s > 1) and hence,

dp,(m(a,a’) < dp,my(a,by) + dp, ) (by,0") < (s +k)+ (s+ k) < s+,

as s + 2k < t. Thus, ep, (my(a) = s+ .

Now suppose that a is a vertex of V(Py(H))—V (Px(G)). Then A contains
an edge in E(H)—E(G), and hence, at least one endvertex of A is outside G,
since 2s > k+1. Assume that one endvertex of A (lying outside G) is in the
branch containing z2. Let v’ be a vertex in G, v’ # v. If dp,m)(a,cy) < s+,
dp,(a)(a,by) < s+t and dp, (g (a, c,r) < s+t, then the other endvertex of A, say
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u, is in G. Since dp, (g (a, cy) = s+t+1, we have ep, (gy(a) > s+t+1, and hence
C(Px(H)) = Px(G). O

Proof of Theorem 1. Let s > %, t > s+2k, and let H be the graph H,.(G).
Since C(Py(H)) = Pi(G) by Lemma 3, it remains to show C'(H) = G.
Suppose that v € V(G). Then dg(v,7%) = dg(v,y?) = s+t + 1. Moreover,
dg(v,2) <s+tif z€ V(H)—{z2,94°}, as 2s + 1 < s+ t. Thus, eg(v) = s+t + 1.
Now suppose that v € V(H)—V(G), and assume that v is in the branch contain-
ing 20, If dg(v,y2) < s+t +1, then v is adjacent to a vertex v’ of G, u # «’. But

then dg(v,2%) > s+ ¢+ 1, and hence C(H) =G. O
For k > 2 we define

o

{ kE+1 if k is even;
k+2 if k£ is odd.

Hence, k° is an odd number.
Next lemma shows that all cycles of length k° in Py (G) are the images (i.e., the
path graphs) of cycles of length £° in G.

Lemma 4. Let k > 2 and let C be a cycle of length k° in Pi(G). Then there is a
cycle D in G such that Py(D) = C.

Proof. Let C = (a1, as,...,ak0). Assume that Ay, As,..., Ago are ordered so that
for each i, 1 < i < kY, we have either 4;(j) = Aix1(j+1), 0 < j < k, or A;(j) =
Aiy1(j—1), 0 < j < k (by A;(j) we denote the j-th vertex of the path A;, i.e.,
A; = (4;(0), A;(1),...,A;(k))). Roughly speaking, the ordering of Aq, As,..., Ago
has the property that a vertex common to two consecutive paths is given indices of
different parity by the two paths.

First suppose that all A;, As, ..., Ago contain an edge, say e, in common. Let
e = (Al(’l,l),Al(’l,l-l-l)) and let Al(’l,l) = A2(22) = --- = Ako(iko). Since all Al,
As, ..., Ao contain the edge e, we have A;(i1+1) = Az(ia+1) = --- = Ago(igo+1).
As aj,as9,...,ar. determine a walk in Px(G), all iy,i3,145,...,ix have the same
parity. Finally, since A1 (i1) = Ago(iko) and Aq(i1+1) = Ago(ige+1), a1 and ago
cannot be adjacent vertices in Py (G).

Now suppose that there is no edge common to all Ay, Ag, ..., Axo. We say that
A; is a turning path in the cycle a1, a2, ..., a5, 1 <1 < k% if A;_1(j—1) = A;(j) =
Ai+1(j—1), 0< j < k‘, or Az—l(]+1) = Al(j) = Az+1<j+1), 0< _] < k. We prove
that there is no turning path in aq, as, ..., ag.. On the contrary, suppose that A; is a
turning path, 0 < ¢ < k°. Clearly, A; and A; 11 have exactly k—1 edges in common,
1 <j < k°, and hence, Ay, As, ..., A; have at least k—(j—1) edges in common, 1 <
J < k°. However, since A; is a turning path, 4;_1, A; and A;;; have exactly £—1
edges in common, too. Hence, A1, As, ..., Axo have an edge in common if k is even,
a contradiction. Thus, suppose that k£ is odd. As shown above, A; is the unique
turning pa,th in aA1,a2y...450K0. If 3 <1 < k0—2, then Ai_2,Ai_1, Ai, Ai+1,Ai+2

have at least k—2 edges in common, so that A;, As, ..., Ay have again an edge
in common, a contradiction. Thus, suppose that i = 2 (the case i = k°—1 can be
solved analogously). Denote by = ago, by = a1, bg = ag, ..., bgo = ago_1. (To be
precise, assume that By, Bs, ..., By are ordered so that for each i/, 1 < i < k°, we
have either le(j) = Bil+1(j—|—1), 0 S j < k, or le(j) = Bi’+1(j_1)7 0< ] S k)
Then Bj is the unique turning path in by,bs,...,bgo. Since k° > 5, we have
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3 < k°—2. As shown above, B, B;, ..., Bxo have an edge in common, and hence,
also Aq, Ag, ..., Ao have an edge in common, a contradiction.

Assume that A;(j) = A2(j—1), 0 < j < k. Since there is no turning path
in a1, as,...,ak, we have A;(k) = Ag+1(0), and e = (A1(k—1), A1(k)) is not an
edge of Agy1. Since Ag41(0) = Ai(k), we have Ago(j) = A1(j—1), 0 < j < k.
All A,(k), Aa(k), ..., Agt+1(k) are mutually distinct, as they are vertices of Agy;.
However, Age (k), Akert+1(k), ..., Ako(k) are mutually distinct too, as they are
vertices of Ago. Since Aq(k) # Ago(k), D = (A1(k), Az(k), ..., Axo(k)) is a cycle of
length k° in G, and C = P (D). O

Let G* be a unicyclic graph on k°+1 vertices, consisting of a cycle of length k°
and a pendant vertex glued by an edge to a vertex of the cycle, £ > 2. Clearly,
P,(GF¥) is a graph on k°+2 vertices, consisting of a cycle of length k° and two edges,
each glued by one endvertex to a vertex of the cycle.

Lemma 5. If k > 2 then there is no graph G such that Py(G) = GF.

Proof. Suppose that there is a graph G such that Py(G) = G*. Let C be the cycle
of length k° in G*. By Lemma 4, G contains a cycle, say D, of length k° such that
P.(D) =C.

By the definition of path graphs, if a and b are adjacent vertices in Px(G), then
A and B share a path of length k—1. Thus, at most one edge of B is not in A. The
G* contains a vertex outside C, that is adjacent to a vertex of C. Hence, G contains
an edge, say e, glued by one endvertex to a vertex of D (the other endvertex of e
is either on D, or outside D). Let G’ be the graph consisting of D and e. Then G’
contains a path A’ of length &, such that a’ lies outside C. However, G’ contains
also a path B’ of length k, such that b’ # a’ and b’ lies outside C, because of the
symmetry of G'. Thus, P;(G’) contains more vertices than G¥, and hence, also
Pi(G) contains more vertices than G*, a contradiction. [

Lemma 6. If k> 2, then there is a graph H* such that C(P(HF)) = G.

Proof. We construct a supergraph H* of G¥, and then we show that the center of
P (HF) is isomorphic to G¥.

Let w be the vertex of degree one in G*, and let z be an endvertex of a path of
length k beginning in w (note that there are exactly two vertices with this property).
Let s > %, t > s+2k, and let Hy = H, 4(G*). To Hy we add (s—1)n + 3 + ¢ new
vertices and s-n + 2 + ¢ new edges (n is the number of vertices of G¥). One of the
added vertices, say x*, is joined to every vertex of G¥ — {w, z} by a path of length
s, and z* is joined to w and z by paths of length s+1. Moreover, one extra-path
of length ¢ is glued by one endvertex to z* (the other endvertex is denoted by z°).
Let H* be the resulting graph.

Denote by z* the unique vertex at distance i from z°, i < ¢t. Let B = (20, z!,

..,z%), and let A’ be the path of length k£ in G* with endvertices w and z (note
that there is a unique path A’ with this property). By Lemma 3, C(Px(Hy)) =
Py(G*) and the radius of Py(Hy) equals s+t. Let a be a vertex in Py(GF). If
a # a', then analogously as in Lemma 3 ep, (z)(a) = s+t can be proved, while
dp,(m)(a’, b) = s+t+1. Moreover, analogously as in the proof of Lemma 3, one can
show that the eccentricity of every vertex of Py(H")—P;(Hy) exceeds s+t. Thus,
the center of Py(H*) is Py(G*)—a’, and hence, C(Py(H)) is a graph isomorphic to
Gk. O
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By Lemma 5, G* is not a Py-path graph, and hence, Theorem 2 is a corollary of
Lemma 6 and Lemma 5.
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