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ABsTRACT. If G is a graph, then its path graph, P (G), has vertex set identical with
the set of paths of length k in G, with two vertices adjacent in Py (G) if and only if the
corresponding paths are ”consecutive” in G. We study the behavior of diam(PZi(G))
as a function of i, where P}(G) is a composition PQ(P;_I(G)), with PY(G) = G.
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1. INTRODUCTION

Let G be a graph and k > 1. The vertex set of the path graph Py (G) is the set
of paths of length k in G (i.e., with k+1 vertices). Two vertices of Px(G) are joined
by an edge if and only if one of the corresponding paths can be obtained from the
other by deleting an edge from one end and adding an edge to the other end. It
means that the vertices are adjacent if and only if one can be obtained from the
other by ”shifting” the corresponding paths in G.

Path graphs were investigated by Broersma and Hoede in [2], as a natural gen-
eralization of line graphs (observe that P;(G) is the line graph of G). In [2] and
[5] Py-path graphs are characterized, and in [7] traversability of P,-path graphs is
studied. The diameter of path graphs is studied in [1], and [3] is devoted to centers
in path graphs.

In this paper we study the diameter of Py-path graphs and their iterations. We
prove:
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Theorem 1. Let G be a connected graph. Then at most one component of Py(G)
is not trivial. Let H be the nontrivial component of P2(G). Then

diam(H) < diam(G) + 2.

Theorem 1 improves a result of Belan and Jurica for Ps-path graphs [1], as they
need a restriction for the diameter of G.

Let G be a graph, £ > 1 and 7 > 0. The i-iterated path graph of G, the
Pi(G), is
G if i = 0;

Pi(G) = { P(PiTY(G)) ifi> 0.

If i > 1, it is easy to find a connected graph G such that P%(G) is not connected.
However, Pi(G) consists of a "large” component and a set of isolated vertices, by
Theorem 1. For this reason, we consider the diameter of the ”large” component of
Pi(G), instead of the diameter of Pi(G).

Let G be a connected graph and let H be the nontrivial component of Py(G).
By [1, Theorem 2| and Theorem 1 we have

diam(G) — 2 < diam(H) < diam(G) + 2.

Here all values from the range [diam(G)—2, diam(G)+2] are attainable, see [1]. For
iterated Pa-path graphs and large ¢ this is not the case. We prove that for every
connected graph G, up to a strictly determined collection of trees and unicyclic
graphs, for large ¢ we have

diam(H;) = diam(H;—1) + 2,

where H; is the nontrivial component of P (G).

We remark that the situation is analogous for line graphs and iterated line graphs,
L{(G) = P}(G), where

diam(G) — 1 < diam(L(G)) < diam(G) + 1,

see [4], but
diam(L*(Q)) = diam(L*"(G)) + 1

for every connected graph G, different from a path, a cycle, and a claw K 3,
provided that 7 is sufficiently large, see [6].

2. RESULTS

For convenience we adopt the following convention. We denote the vertices of
P»(@G) (as well as the vertices of G) by small letters a, b, ... , while the corresponding
paths of length 2 in G will be denoted by capital letters A, B, ... . It means that if
A is a path of length 2 in G and a is a vertex in P»(G), then a must be the vertex
corresponding to the path A.

The vertices of Py(G) correspond to the paths of length two in G; and the
vertices of PZ(G) correspond to "special collections” of three paths of length two
in G. If 4 > 2, it is not easy to represent the vertices of Pi(G) in G. The reason
is that P(G) has in general much more vertices than G. However, loosing a bit
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of information about the vertices of Pi(G) we can count distances between them
already in G. For this reason we introduce the concept of a history.
Let G be a graph, i > 0, k > 1, and let v be a vertex in P} (G).
1° The 0O-history of v, BY(v), is the subgraph of P}(G) containing only the
vertex v. This vertex will be called an out-vertex of Bp(v).
2° If 0 < j < i, we denote the j-history of v as Bi(v). It is a subgraph of
P,i_j(G). Assume that V(Bi_l(v)) = {a1,a3,...,a;}. Then, the vertices
and edges of B,Z (v) are the vertices and edges of A, Ag, ..., A;. Moreover,
if a;,,a4,,...,a;, are the out-vertices of Bi_l(v), then the endvertices of
Ai, Aiys ..., A, will be called out-vertices of B,Z(v).
We remark that if v is a vertex in the i-iterated line graph of GG, then all vertices
of BY(v) are the out-vertices, 0 < j < i.
The unique 1-history of a vertex in P»(G) is shown in Figure 1; and all possible
2-histories of vertices in PZ(G) are shown in Figure 2. In these pictures, the out-
vertices are painted black.

Figure 1

VAVAN 4 [
S [] [

Figure 2

We will count distances in P:(G) using the distances between out-vertices of
t1-histories in G. Let G be a graph, ¢ > 0 and 0 < 5 < 4. Let u and v be distinct
vertices in Pi(G), and let BJ(u) and B)(v) be j-histories of u and v, respectively.
Then d(u, v) denotes the shortest distance from an out-vertex of Bj(u) to an out-
vertex of BJ(v) in Pi™7(Q).

Lemma 2. Let G be a connected graph. Let u and v be non-isolated vertices in
P,(G) and let BX(u) and Bi(v) be edge-disjoint 1-histories. Then

dp, (@) (u’ U) =2+ di(u’ ’U).

Proof. Let T = (u=ag,a1,as2,...,0,-1,a,=v) be a shortest walk from u to v in
P,5(G). Let i, be the last index such that A; contains an out-vertex of U, and let
1, be the first index such that A; contains an out-vertex of V. It is easy to see
that 7, > 2 and 4,, < r—2. Thus,

dp,(¢)(u,v) = dp,(a) (U, a;,) + (iv—iu) + dp,(@)(ai,,v) > 4+ (iy—iy)
3



(we remark that i,—i, = dp,(q)(ai,,ai,) if iy > i,.) Let u; be the out-vertex of
U in A;, and let v; be the out-vertex of V' in A, . Since all paths U, Ay, As,...,
A,_1,V have length 2, we have

dG(ulavl) < (ZU_ZU,) +2< dPQ(G)(ua U) —2.

Thus,
de(u,v) + 2 < dp, () (u, v).

Now suppose that U = (uy, uz,us), V = (v, vz, v3), and dg(u,v) = dg(u1,v1) =
I > 2. (The cases [ = 0 and [ = 1 are trivial and can be solved separately.) Let
(U1,b1,b2, .. .,bl_1,’l)1) be a shortest walk in G. Denote A2 = (U1,b1,b2), A3 =
(b1,b2,b3), ey Al = (bl_g,bl_l,’l)l). MOI‘GOVGI‘, if b1 = U2 then A), = (U3,b1,b2)
and if b;_; = vy then A} = (bj_2,b;_1,v3). Since u and v are not isolated vertices
in P(G), it is easy to check, that dp,(g)(u,a2) = 2 and dp,(g)(a;,v) = 2 (or
dp,(a)(u,ay) = 2if by = up and dp,(g)(u, a2) > 2; and dp,(q)(a;,v) = 2if b1 = vy
and dp, (@) (ar,v) > 2). Since dp,(g)(az,a;) =1 — 2, we have

dp,(e)(u,v) <2+ (dg(u,v) — 2) + 2 = di(u,v) + 2,
which completes the proof. [

Now we are able to prove Theorem 1.

Proof of Theorem 1. At first we prove that Py(G) has at most one nontrivial com-
ponent. Let ujus and vive be edges in Po(G). We show that both of them belong to
the same component. If there is a pair of edge-disjoint 1-histories among B2 (u1),
Bl(us), Bi(v1) and Bi(vs), then the edges ujus and vivs belong to the same
component of P,(G), by Lemma 2. (Observe that 1-histories of adjacent vertices
cannot be edge-disjoint.) Thus, suppose that such a pair does not exist. Assume
that Uy = (zg,x1,22) and Uy = (x1,22,23). Then at least one of V; and Vs, say
V1, contains the edge 172, so that either dp,(q)(vi,u1) = 1 or dp,(g)(v1,u2) = 1.
Thus, each pair of edges of P>(G) belongs to a common component of Py (G).

Let H be the nontrivial component of P,(G), and let u and v be vertices of H
such that dg(u,v) = diam(H). If U = Bi(u) and V = Bl(v) are edge-disjoint,
then dg(u,v) = 2 + dg(u,v), by Lemma 2. Thus,

diam(H) = dg(u,v) = 2 + de¢(u,v) < diam(G) + 2.

Now suppose that U = (uy,us,u3) and V = (v1,vq,v3) share an edge, say
ugug. If V= (ug,us,vs), then 1 = dgy(u,v) = diam(H) < diam(G) + 2. Thus,
suppose that V = (vq, us2,us). If there is a vertex wy in G such that wy # us and
uswo € E(G), then both v and v are adjacent to w in H, W = (usg, uz, wp), so that
2 = diam(H) < diam(G) + 2 again.

Thus, suppose that degg (u3) = 1. This means that degg(u1) > 2 and degg(v1) >
2. If u; and vy are adjacent vertices in G, then (u,z,y,v) form a walk in H,
X = (ug,u1,v1) and Y = (u1,v1,u2), so that 3 = diam(H) < diam(G) + 2 (as
diam(G) > 1).

Thus, suppose that dg(ui,v1) > 2. Then diam(G) > 2. Since degg(uy) > 2
and degg(v1) > 2, there are vertices ug and vg in G such that X = (ug, u1,up) and
Y = (u2,v1,vp) are paths of length two in G. Then (u,x, w,y,v) form a walk in H,
W = (u1,us,v1), so that 4 = diam(H) < diam(G) +2. O

Now we extend Lemma 2 to the case of iterated P,-path graphs.
4



Lemma 3. Let G be a connected graph, 1 > 0 and 0 < j <i. Let u and v be non-
isolated vertices in Pi(G), and let Bi(u) and Bj(v) be edge-disjoint j-histories.
Then

dpi(a)(u, v) = 2j + dg(u,v).

Proof. For 7 = 0 the statement holds trivially, while for j = 1 it reduces to
Lemma 2.

Suppose that j > 2. Let U = (u1, ug2, u3) and V = (v1, vz, v3). By Lemma 2, we
have dpi(q)(u,v) = 2+ d¢(u,v). Without loss of generality we may assume that
dg(u,v) = dpgfl(G)(’U,]_,’U]_). Since BJ(u) and Bl (v) are edge-disjoint, B ' (u;) and
B;_l(vl) are edge-disjoint, too. By indugtion, we have dpi-1 ¢ (uy,v1) = 2(?'—1) +
d) ™' (u1,v1). Thus, dpi () (u,v) = 2j+d3 " (u1,v1). As each out-vertex of B ™" (u;)
(of BJ™"(v1)) is an out-vertex of BJ(u) (of BJ(v)), we have di " (u1,v1) > d(u,v),
and hence,

dpi(a)(u,v) > 25 + dg(u,v).

On the other hand, assume that d}(u,v) = dP;—j(G) (p,q), where p is an out-

vertex of BJ(u) and ¢ is an out-vertex of BJ(v). As each out-vertex of BJ(u) is
an out-vertex of either BJ '(u;) or BJ '(us), assume that p is an out-vertex of
BS7'(uy) and ¢ is an out-vertex of B '(v1). Then di ' (u1,v1) = di(u,v). Since
B (u) and Bj(v) are edge-disjoint, B *(u;) and BI~'(v;) are edge-disjoint, too.
By induction, we have dpi-1 ¢, (u1,v1) = 2(j—1)+di (g, v1) = 2(j—1) +di(u, v).
As dpig)(u,v) <2+ dpi-1 (g (u1,v1), by Lemma 2, we have

dpia)(u,v) < 2j +di(u,v). O

Lemma 4. Let G be a connected graph containing two edge-disjoint cycles. Then
there is iq such that for all i > ig

diam(H;) = diam(H;_1) + 2,

where H; is the nontrivial component of PI(@), j > 0.

Proof. Since P»(G') = G’ if G' is a cycle, Pi(G) contains an edge for every i > 0.
Let C and D be two edge-disjoint cycles in G, and let dg(cp,dp) be the shortest
distance from a vertex of C to a vertex in D, ¢y € V(C) and dy € V(D). We prove
that for every i > 0 there are vertices ¢; and d; in P§(G), such that Bi(c;) contains
only edges of C and cp is an out-vertex of Bi(c;), and B(d;) contains only edges of
D and dy is an out-vertex of B(d;).

If + = 0, then ¢y and dy fulfill the required conditions. Let ¢ > 0. Suppose that
there are vertices c;_; and d;_; in Py '(G) such that B: '(c;_1) contains only
edges of C and cg is an out-vertex of By !(c;_1), and Bi™'(d;) contains only edges
of D and dy is an out-vertex of By (d;_;). Since Bi~!(c;—1) is a subgraph of C,
ci_1 is a vertex in P{1(C). As Pi~1(C) is a cycle, there are vertices z;_; and y;_;
in Pi=1(C), such that C; = (¢;—1, i1, yi—1) form a path of length two in Pi~1(C).
Then ¢; is a vertex in Pi(G) such that Bi(c;) contains only edges of C and cp is an
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out-vertex of B&(c;). Analogously, one can show that there is a vertex d; in Pi(G)
such that Bi(d;) contains only edges of D and dg is an out-vertex of Bj(d;).

Since the shortest distance between V(C) and V(D) is realized by dg(co, do),
we constructed sequences of vertices c¢g,c1,... and dg,dy,... such that ¢;,d; €
V(P4(Q)) for all i > 0 and

dpi(a)(ci, di) = 2i + dg(co, do),

by Lemma 3. However, diam(H;) < diam(H;—1) + 2, by Theorem 1. Thus, only
for finitely many indices j we have diam(H;) < diam(H;_1) + 2, and hence, there
is 1@ such that for all ¢ > 7 we have

diam(H;) = diam(H;—1) + 2,

as required. [

To prove our main result we introduce prolific graphs, kites, torn kites and kite’s
eggs. A connected graph G is prolific if there exists ¢ > 0 such that Pi(G) contains
at least two cycles. In what follows we characterize prolific graphs.

As Py(G') 2 G if G' is a cycle, P»(G) is a prolific graph if G is prolific. This
means that to characterize prolific graphs it suffices to consider unicyclic graphs
and trees.

Let Gop and G; be the graphs depicted in Figure 3, 7 > 1, where the length of
u—v path is 25 — 1 in Gj.

Figure 3

We have the following observation.

Observation 5. The graph Pi(Gy) is a cycle of length 6 for every i > 1; and if
Jj > 1, then the nontrivial component of Py(G;) is a cycle of length 4 for every
1>7.

A kite is a unicyclic graph composed of an even cycle C and a set of vertices,
each joined by an edge to some vertex of C. Moreover, each pair of vertices of a

kite that have degree at least three, has an even distance (see Figure 4 for a kite
with a cycle of length 8).

Lemma 6. Let G be a connected unicyclic graph. Then G is prolific if and only if
G is different from a cycle and a kite.

Proof. 1t is easy to see that P»(G) is a cycle if G is a cycle. Analogously, P2(G) is
a kite if GG is a kite. Thus, neither a cycle, nor a kite, are prolific.

Suppose that G is different from a cycle and a kite. Let C be the unique cycle in G.
Suppose that there is a vertex w in C such that wu,uv € E(G) for some u,v ¢ V(C)
(i.e., G contains a path of length two glued to a vertex w in C). Assume that
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C = (w,wy,ws, ..., Wr_2,wr_1), and denote by H the subgraph of G with vertices
W, Wi, Wa, Wy_9, Wye_1, U, v and edges wwy, Wi wWse, WWy_1, Wy_1Wy_g, W, uv (We note
that wq,wy, w,_o and w,_; are not necessarily distinct). By Observation 5, Py(H)
contains a cycle of length six that is different from P5(C). Hence, G is a prolific
graph.

Suppose that the cycle C in G has an odd length. If G is different from a cycle,
there is a vertex w in C such that wv is an edge in G for some v ¢ V(C). Denote
by H the subgraph of G with vertices V(C) U{v} and edges E(C) U {wv}. Assume
that the length of C is 2 — 1. By Observation 5, P}(H) contains a cycle of length
four that is different from PL(C), and hence, G is a prolific graph.

Finally, suppose that the cycle C in G has an even length. Moreover, suppose
that there are vertices w; and ws in C such that wyv1, wove € E(G) for some vy, vo ¢
V(C) and dg(wi,w3) = 20 — 1 for some I > 1. Let T = (wy,u1,u2,. .., Uz_2,ws)
be a shortest walk in G, and let uy and wug;_; be vertices in C adjacent to w;
and waq, respectively, ug,ug—1 ¢ V(7). Denote by H the subgraph of G with
vertices V(T) U {v1,ve, up, ug—1} and edges E(T) U {wiv1, wava, witg, waligr—1}.
By Observation 5, P}(H) contains a cycle of length four that is different from P}(C),
and hence, G is a prolific graph. O

Lemma 7. Let G be a tree and i > 0. If Pi(G) contains a cycle then G contains
a subgraph isomorphic to G; for some j, 0 < j <.

Proof. First suppose that P>(G) contains a cycle C. Since G is a tree, 1-histories of
every pair of adjacent vertices in C form a path of length three in G. Moreover, there
are three subsequential vertices a,b,c on C such that A = (uy,u,v), B = (u,v,v1)
and C = (ug,u,v) for some uy,us,u,v,v1 € V(G). Let d be the vertex on C
following c. Clearly, d # a. If D = (u,v,vy) for some vertex vy in G, then G
contains G1. Thus, suppose that D = (wsq, u2,u). Let = be a vertex of C preceding
a. Clearly, x # d. If X = (u,v,v3), then G again contains a copy of G;. On the
other hand, if X = (wq,u1,u), then G contains a copy of Gy.

Now suppose that H is a tree and Py(H) contains a copy of Gy with central
vertex a. Assume that A = (uq,u,v). As there are three vertices adjacent to a in
Gy, without loss of generality we may assume that 1-histories of two of them, say
b, and be, do not contain u;. Hence, By = (u,v,v;) and Bs = (u,v,vy) for some
vertices v1,v in H. Let ¢; be the endvertex of Gy adjacent to b; and let ¢y be
the endvertex of Gy adjacent to bs. If both C7 and Cy do not contain u, then H
contains a copy of Go. On the other hand, if this is not the case, H contains a
copy of G1. Hence, if G is a tree and Pi~'(G) contains a copy of Go, i > 2, then
Py~ (@) contains a cycle.

Finally, suppose that H is a tree and P,(H) contains a copy of G, j > 1. Denote
by a and b the vertices of degree three in G;. Moreover, suppose that P,(H) is a
tree. If two vertices, say u and v, are adjacent in P,(H), then the distance from any
out-vertex of U to any out-vertex of V' is odd. Since Py(H) is a tree, we can extend
this observation to any pair of vertices in Py(H). Thus, if u and v are vertices with
an odd distance in Py(H), then the distance from any out-vertex of U to any out-
vertex of V' is odd. As a and b have degree three, at least one out-vertex of A, say
x, and at least one out-vertex of B, say y, have degree at least three in H. Since the
distance from a to b is odd in Py(H), z and y have an odd distance in H. Moreover,
since the distance from a to b is 2j — 1 in Py(H), and dp,(g)(a,b) = 2 + dg(a,b),
by Lemma 2, we have dg(z,y) < 2 + d{(a,b) + 2 = 2§ + 1. Thus, H contains a
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copy of G, 1 < k < j+1. Hence, if G is a tree and P}(G) contains a cycle, then G
contains a copy of G, 0 < j <4, as required. [J

Kkite kite’s egg

Figure 4 Figure 5
torn kite

Figure 6

A torn kite is a tree composed of a diametric path 7 and a set of vertices, each
joined by an edge to some vertex of 7. Moreover, each pair of vertices of a torn
kite that have degree at least three, has an even distance (see Figure 6 for a torn
kite with the diametric path of length 9).

Corollary 8. Let G be a tree. Then Pi(G) does not contain a cycle for all i > 0
if and only if G is a torn kite.

Proof. By Observation 5, if P(G) does not contain a cycle, then G does not contain
G;,0 < j <. Since Pi(G) does not contain a cycle for all i > 0, G does not contain
G; for all j > 0, and hence, G is a torn kite.

Now suppose that G is a torn kite. Then G does not contain G; for all 7 > 0,
and hence, Pi(G) does not contain a cycle for all i > 0, by Lemma 7. O

A kite’s egg is a tree composed of a copy of G and a set of vertices, each joined
by an edge either to the central vertex or to some endvertex of G (see Figure 5 for
a kite’s egg).

In the following theorem a characterization of prolific graphs is given.

Theorem 9. Let G be a connected graph. Then G s prolific if and only if G is
different from a cycle, a kite, a torn kite, a kite’s egg, and G, j > 1.

Proof. By Lemma 6, if G is a cycle or a kite, then G is not a prolific graph.
Analogously, GG is not a prolific graph if G is a torn kite, by Corollary 8. Since the
Ps-path graph of kite’s egg is a kite, kite’s egg is not a prolific graph, too. Finally,
since Pi(G;) is a 4-cycle for all j > 1 and ¢ > j, by Observation 5, the graphs G
are not prolific.

Now suppose that G is not a prolific graph. Then G does not contain two cycles.
If G is a unicyclic graph, then G is either a cycle or a kite, by Lemma 6. Hence,
suppose that G is a tree. If Pi(G) does not contain any cycle for all i > 0, then G
is a torn kite, by Corollary 8. Thus, suppose that Pi(G) contains a cycle for some
¢ > 0. Then G contains a copy of G, 0 < j <14, by Lemma 7. Consider two cases.

(1) G contains a copy of G;, j > 1.
8



Let k£ be the smallest index, k > 1, such that G contains a copy of Gj.
Suppose that G is different from Gj. Since k is the smallest index, k£ > 1,
such that G contains a copy of Gk, there are two cases to consider. Either
there is a vertex from V(G) — V(Gy) adjacent to an endvertex of Gy, or
there is a vertex from V(G) — V(Gg) adjacent to a vertex of degree three
in Gk

At first suppose that there is a vertex, say z1, from V(G) — V(G) adja-
cent to an endvertex of Gy, in G. Then P,(G) contains a copy of Gx—; and a
vertex, say xo, adjacent to an endvertex of Gx_;. Thus, P2’“_1(G) contains
a copy of GG; and a vertex, say xr, adjacent to an endvertex of GG;. Hence,
P¥(G) contains a cycle of length four, and a path of length two glued by
one endvertex to the cycle. Since P¥(G) is a unicyclic graph different from
a cycle and a kite, GG is a prolific graph, by Lemma 6, which contradicts our
assumptions.

Now suppose that there is a vertex, say z1, from V(G) — V(Gy) adjacent
to a vertex of degree three in G. Then P,(G) contains a copy of Gx_; and a
vertex, say x2, adjacent to a vertex of degree three in Gy_;. Thus, sz_l(G)
contains a copy of G and a vertex, say xy, adjacent to a vertex of degree
three in G71. Hence, P¥(G) contains a copy of K32, that has two cycles.
This means that G is a prolific graph which contradicts our assumptions.

Since there is not a vertex in V(G) —V (Gy) adjacent to a vertex of degree
two in G, G is isomorphic to Gg.

(2) G contains a copy of Gy, but it does not contain a copy of G;, j > 1.

If there is a path of length two, glued by one endvertex to Gy, then Py(G)
contains a unicyclic graph different from a cycle and a kite. Thus, G is a
prolific graph, by Lemma 6, which contradicts our assumptions. Hence, G
consists of a copy of Gy and a collection of vertices adjacent to vertices of
Gy. Moreover, as G does not contain a copy of G1, G is a kite’s egg. [

By Theorem 9, a connected graph is either a prolific graph, or a cycle, a kite, a
torn kite, a kite’s egg, or the graph G;, 7 > 1.

Theorem 10. Let G' be a connected graph. Denote by H; the unique nontrivial
component of P2j (G) (if it exists), j > 0.
(1) If G is a prolific graph, then there is iq such that for all i > ig we have
diam(H;) = diam(H;_1) + 2;
(2) if G is a cycle, or a kite, a kite’s egg, or the graph G, j > 1, then there is
ig such that for all i > i we have diam(H;) = diam(H;_1);
(3) if G is a torn kite, then there is ig such that for all i > ig the graph Pi(G)
is empty.

Proof. Let G be a prolific graph. Then there is i > 0 such that PgI(G) contains
two cycles, say C and D. However, C and D are not necessarily edge-disjoint. Let
T be a longest path that have C and D in common, and let [ be the length of 7.
Since Po(T) is a path of length I — 2 (or an empty graph if [ < 1), the length of a
longest path that have P,(C) and P,(D) in common is [ — 2. Hence, Hy;/o744 is a
connected graph containing two edge-disjoint cycles. By Lemma 4, there is ¢g such
that for all i > ig diam(H;) = diam(H;—1) + 2.

If G is a cycle, then Pi(G) = G, so that diam(P(G)) = diam(Pi~*(G)) for all
i > 1. By Observation 5, if j > 1 then Pi(G,) is a cycle of length four for every
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i > j, and hence, diam(P(G;)) = diam(P;~'(G;)) for all i > j + 1. Now suppose
that G is a kite with a cycle C of length 2[. Since the case when G is a cycle is already
solved, assume that there is a vertex v in G such that v ¢ V(C). As G is a kite, there
is a vertex w in C adjacent to v. Let C = (u1, ug, w, u4, us,...). Then a; and ay are
endvertices in Py(G), A1 = (ug,w,v) and Ay = (ug, w,v). Moreover, a; is adjacent
to by in Py(C), By = (u1, u2,w), as is adjacent to by in P5(C), Bs = (us, ug, w), and
dp,(q)(b1,b2) = 2. Thus, PI7YH@) (and Pi(G), i > 1 as well) is a kite with a cycle
of length 2[, in which there are [ vertices of degree two and [ vertices of degree at
least three. Moreover, these vertices are distributed alternatively around the cycle.
Hence, diam(H;) = diam(H;_1) for all ¢ > . Finally, as P»(G) is a kite if G is a
kite’s egg, there is ig such that diam(H;) = diam(H;_1) for all i > ig.

Let G be a torn kite with a diametric path of length [. Since P»(G) is a torn
kite with a diametric path of length [ — 2 (or an empty graph if I < 1), Pi(G) is an
empty graph if i > |L] +1. O
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