ON RAMSEY-TYPE GAMES FOR GRAPHS

MARTIN KNOR

Slovak Technical University, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, 813 68 Bratislava, Slovakia

ABSTRACT. By a Ramsey-type game is meant a game in which two players (the constructor and the destroyer) alternately pick previously unpicked edges of the complete graph on n vertices, and the constructor wins if and only if he has selected all edges of a prescribed k-vertex graph G. We prove that the constructor wins if G is an n-vertex path $(n \ge 5)$ or a cycle $(n \ge 15)$, or if G is an n-vertex tree having some special properties.

This is a preprint of an article accepted for publication in Australasian Journal of Combinatorics ©1996 (copyright owner as specified in the journal).

1. INTRODUCTION

The Ramsey game on pairs is a 2-player game where the players alternately pick previously unpicked edges of the complete graph on n vertices, and the first player wins if he has selected all edges of some complete subgraph on k vertices, see [2]. Let $N^*(k)$ be the least integer n so that the first player has a winning strategy, that is, the first player can always select all edges of some complete graph on kvertices. As proved by Erdős and Selfridge in [2] (the lower bound) and Beck in [1] (the upper bound), we have:

$$2^{\frac{\kappa}{2}} < N^*(k) < (2+\epsilon)^k$$
.

Generalizing the Ramsey game on pairs, Hahn and Širáň studied the following Ramsey-type game for graphs: Let G be a k-vertex graph, and let there be two players, the constructor and the destroyer. The players alternately pick previously unpicked edges of the complete graph on n vertices, and the constructor wins whenever he has selected all edges of some G, otherwise the destroyer is the winner, see [3].

Let G be a k-vertex star and let N_G^* be the least number of vertices on which the constructor has a winning strategy, that is, the constructor can always select all edges of some k-vertex star. In [3] it is proved:

$$1.2936k < N_G^* < 2k - \log_2 k \,.$$

In this paper we consider Ramsey-type games for spanning subgraphs of the complete graph on n vertices. We show that if $n \ge 5$ the constructor can always

construct a path on n vertices, and if $n \ge 15$ he can even construct a cycle on n vertices. (We suppose that the destroyer begins.) This can be interpreted as follows: If n satisfies the conditions mentioned above, the constructor can construct a Hamiltonian path (or a Hamiltonian cycle) in a complete graph on n vertices. Moreover, the constructor can construct a path or a cycle even if the destroyer has picked some, but at most (n-5)/2 or (n-15)/2 edges, respectively, before the game starts. Actually, our proofs will yield a certain class of trees on n vertices that can be constructed by the constructor.

2. Paths

In this section we consider a Ramsey-type game played on n vertices, where the constructor wins if and only if he has selected all edges of some path on n vertices. Let us denote this game by P_n^c (P_n^d) if the constructor (the destroyer) begins. We remark that the moves of the constructor will always be denoted by c_1, c_2, \ldots , while for the moves of the destroyer we use d_1, d_2, \ldots .

It is easy to see that the constructor wins the games P_2^c and P_3^c , while in P_4^c the destroyer is a winner (choosing d_1 nonadjacent to c_1 , and d_2 nonadjacent to c_2). We prove here that in P_n^d , $n \ge 5$, the constructor is the winner, i.e., the destroyer loses even if he starts.

For the sake of convenience, if X and Y are two disjoint subsets of vertices, by $\langle X \rangle$ and $\langle Y \rangle$ we denote the set of edges having both endvertices in X and Y, respectively, and by XY we denote the set of edges having one endpoint in X and the other in Y. If no confusion is likely, an edge is often identified with the set of its endvertices.

Lemma 1. The constructor wins both P_5^d and P_6^d .

Proof. We utilize the fact that the constructor wins the games P_2^c and P_3^c .

Let c_1 be adjacent to d_1 , and let d_2 be an arbitrary (previously unpicked) edge. It is easy to see that the vertex set can be partitioned into two sets, say X and Y, both of size at most 3, such that $d_1, d_2 \in XY$, and $c_1 \in \langle X \rangle$. Let us choose $c_2 \in \langle Y \rangle$ such that c_2 is adjacent to d_1 .

For the moment consider the game P_5^d . We may assume that |X| = 2 and |Y| = 3. In what follows if $d_i \in \langle Y \rangle$, $i \geq 3$, then we choose $c_i \in \langle Y \rangle$, while if $d_i \in XY$ we pick $c_i \in XY$. Moreover, in the later case we choose c_i such that $c_i \cap Y \in \{ \cup d_j : d_j \in XY, j \leq i \} \cap Y$ (observe that such a choice is always possible). As $d_1, d_2 \in XY$ and $c_1, c_2 \notin XY$, this choice requires that, when the game is finished, the constructor has joined all but one vertex from Y to X. Since he has paths on both X and Y, he has constructed a path on five vertices.

Now consider P_6^d . As |X| = |Y| = 3, we may assume that $d_3 \notin \langle Y \rangle$. Let us choose $c_3 \in \langle X \rangle$ such that (if possible) c_3 is adjacent to d_1 (if $d_3 \in XY$ then c_3 can surely be adjacent to d_1). Since the constructor has a path on X, in what follows only its endpoints are important. Let us denote the endpoints by X'. Now, in $\langle Y \rangle$ there is only one edge picked by the constructor, and in X'Y there are at most two edges picked by the destroyer. (In the case $d_3 \in XY$ we have $d_1 \notin X'Y$ as all c_1 , c_2 and c_3 are adjacent to d_1 .) Hence, the constructor can proceed on X' and Y analogously as in the case of P_5^d .

When the game is finished the constructor has paths on both X and Y, and all but one vertex from Y he joined to X'. Hence, he constructed a path on six vertices. \Box

In the preceding proof, if the destroyer has picked d_i adjacent to the vertex from X - X' (or made any useless move), then the constructor can make an arbitrary move. For this reason, in what follows we do not consider useless moves of the destroyer.

Theorem 2. The constructor wins the game P_n^d if $n \ge 5$.

Proof. By Lemma 1, we may assume n > 6.

Let us choose c_1 adjacent to d_1 , and denote by X the vertices of c_1 and by Y the remaining n-2 vertices. By induction, the constructor has a winning strategy in P_{n-2}^d . Thus, if $d_i \in \langle Y \rangle$ then choose $c_i \in \langle Y \rangle$ according to this strategy, while if $d_i \in XY$ then pick $c_i \in XY$ such that d_i and c_i have a common vertex in Y whenever possible.

When the game is finished the constructor has a path on Y, and all but one vertex from Y he joined to X, i.e., he constructed a path on n vertices, as required. \Box

One can see that the constructor's strategy is not as tight in the case n > 6 as in the case $5 \le n \le 6$. Namely, he can pause in the first occurrence of d_i in XY, $i \ge 2$. His first choice of $c_i \in XY$ is necessary when the destroyer has three edges in XY. Moreover, the constructor can avoid getting stuck at some disadvantageous vertices during the game analogously as in P_6^d .

Consider the following generalization of P_n^d : On an *n*-vertex set there is a subset *B* of *k* prescribed vertices, and the destroyer had picked *l* edges before the game started. In the game, the players alternately pick previously unpicked edges, the destroyer begins, and the constructor wins whenever he has selected all edges of some *n*-vertex path that does not have endpoints in *B*. Let us denote this game by $P_n^d(k, l)$.

Lemma 3. If $n \ge 5 + 3k$ then the constructor wins the game $P_n^d(k, 0)$.

Proof. If k = 0 then the constructor has a winning strategy in $P_n^d(0,0)$ as $n \ge 5$, by Theorem 2. Suppose that $k \ge 1$ and let $b \in B$. We may assume that the destroyer had picked all edges from $\langle B \rangle$ before the game started.

Let us choose c_1 and c_2 both incident with b, and moreover, we choose c_1 adjacent to d_1 and, if d_2 is not adjacent to c_1 , choose c_2 adjacent to d_2 . (Observe that this is always possible.) Now let X be the set of endvertices of c_1 and c_2 , and let Y be the set of remaining n-3 vertices (i.e., Y contains k-1 vertices from B). The constructor has a path on X, $d_1, d_2 \in XY$, and there are no picked edges in Y (except those in $\langle B-\{b\}\rangle$). Denote $X' = X - \{b\}$.

Clearly, $n-3 \geq 5 + 3(k-1)$. By induction, the constructor has a winning strategy in $P_{n-3}^d(k-1,0)$ on Y. Thus, if $d_i \in \langle Y \rangle$ then choose $c_i \in \langle Y \rangle$ according to this winning strategy, while if $d_i \in X'Y$ then choose $c_i \in X'Y$ such that $c_i \cap Y \in \{ \cup d_j : d_j \in XY, j \leq i \} \cap Y$ whenever possible. The final condition requires that, when the game is finished, the constructor has constructed an *n*-vertex path that does not have endpoints in B. \Box

Theorem 4. If $n \ge 5 + 3k + 2l$ then the constructor wins the game $P_n^d(k, l)$.

Proof. By Lemma 3, we may assume $l \ge 1$. We consider five cases **1.** - **5.**, and in each of them we reduce the game $P_n^d(k,l)$ to $P_{n'}^d(k',l')$ such that n' < n and $n' \le 5 + 3k' + 2l'$. More precisely, after the first j - 1 moves of both players we split the *n* vertices into two sets X and Y, |X| = j and |Y| = n - j = n'. The constructor will have a path on X (its endpoints we denote by X'), and the destroyer will have at most two edges in X'Y. In Y there will remain k' vertices from B and l' destroyer's edges, and the numbers n', k' and l' will satisfy the inequality mentioned above. By induction, the constructor has a winning strategy in $P_{n'}^d(k', l')$ on Y, and hence, next we pick $c_i \in \langle Y \rangle$ according to this strategy if $d_i \in \langle Y \rangle$, while if $d_i \in X'Y$ we pick $c_i \in X'Y$ such that $c_i \cap Y \in \{ \cup d_j : d_j \in XY, j \leq i \} \cap Y$ whenever possible. This will result in the required n-vertex path.

Let D be the graph consisting of d_1 and the destroyer's l edges. Since $n \ge 5+3k+2l$, there is a set $F = \{f_1, f_2, ...\}$ of at least 3+2k vertices that are neither in B nor in D.

1. Suppose that there are two vertices of degree one in D, say u and v, such that uv is not in D.

Choose $c_1 = uv$. If $u, v \notin B$ then $X = X' = \{u, v\}, n' = n-2, k' = k, l' = l-1,$ and $n-2 \ge 5 + 3k + 2(l-1)$.

If $u, v \in B$ then choose $c_2 = f_1 u$, $c_3 = v f_2$. (It is not important if $d_2 = f_1 u$ as the set F is large enough, so that the constructor can choose another of its vertices. In what follows this fact will not be specifically mentioned.) Put $X = \{f_1, u, v, f_2\}$ and $X' = \{f_1, f_2\}$. Clearly, the destroyer has at most two edges in X'Y, n' = n - 4, k' = k - 2, $l' \leq l + 1$, and $n - 4 \geq 5 + 3(k - 2) + 2(l + 1)$.

Finally, if $u \in B$ and $v \notin B$ choose $c_2 = f_1 u$, and put $X = \{f_1, u, v\}, X' = \{f_1, v\}$. (The case $u \notin B$ and $v \in B$ can be proved similarly.) We have n' = n - 3, $k' = k - 1, l' \leq l$, and $n - 3 \geq 5 + 3(k - 1) + 2l$.

2. Suppose that there is a vertex, say u, of degree two in D.

Choose $c_1 = uf_1$. If $u \notin B$ then $X = \{u, f_1\}$ and $n-2 \ge 5+3k+2(l-1)$. If $u \in B$ choose $c_2 = f_2u$, $X = \{f_2, u, f_1\}$, and $n-3 \ge 5+3(k-1)+2l$.

3. Suppose that there is a vertex, say u, of degree one in D. Since there are at least two edges in D, we may assume that there is a vertex, say v, of degree at least three in D such that uv is not in D, by **1.** and **2.**

Let $c_1 = uv$ and $c_2 = vf_1$. If $u \notin B$ we choose $X = \{u, v, f_1\}$ and $X' = \{uf_1\}$. The destroyer has at most two edges in X'Y, and n-3 > 5 + 3k + 2(l-2). If $u \in B$ choose $c_3 = f_2u$, $X = \{f_2, u, v, f_1\}$, and n-4 > 5 + 3(k-1) + 2(l-1).

In the next cases we may assume that the degrees of the vertices in D are at least 3.

4. Suppose that u and v are vertices in D, each of degree at least three, and uv is not in D.

Choose $c_1 = uv$, $c_2 = f_1u$, $c_3 = vf_2$, and put $X = \{f_1, u, v, f_2\}$ and $X' = \{f_2, f_1\}$. The destroyer has at most two edges in X'Y and n-4 > 5 + 3k + 2(l-3). **5.** Suppose that D is a complete graph on at least four vertices.

Let u be a vertex of degree at least three in D. Choose $c_1 = uf_1$, and $c_2 = vu$ such that v is not in D and d_2 is adjacent to c_1 or c_2 . (This is possible as D is a complete graph.) If $v \notin B$ then $X = \{v, u, f_1\}, X' = \{v, f_1\}$, the destroyer has at most one edge in X'Y, and n-3 > 5 + 3k + 2(l-2). If $v \in B$ choose $c_3 = f_2v$, $X = \{f_2, v, u, f_1\}$, and n-4 > 5 + 3(k-1) + 2(l-1). \Box

3. Cycles

In this section we consider a Ramsey-type game played on n vertices, where the constructor wins if and only if he has selected all edges of some cycle on n vertices. We denote this game by R_n^c (R_n^d) if the constructor (the destroyer) begins.

The constructor loses in R_n^c if $n \leq 4$, since the cycle has too many edges. Moreover, he loses in R_5^c (choose d_1 nonadjacent to c_1 , d_2 adjacent to d_1 , and d_3 such that $\{d_1, d_2, d_3\}$ is either a 3-cycle or contains a vertex of degree three), and in R_6^c (choose d_1 nonadjacent to c_1 ; the constructor likes to pick at least two edges incident with each vertex, and utilizing this fact in the first five moves the destroyer can pick K_4-e , i.e., a complete graph on four vertices without one edge). However, for $n \geq 15$ we have:

Theorem 5. The constructor wins the game R_n^d if $n \ge 15$.

Proof. In the first five moves the constructor picks a 4-cycle, and then a path on remaining n - 4 vertices. Since the endvertices of the path will be joined to the 4-cycle in a good way, this will result to a cycle on n vertices.

Let us choose $c_1 = yx$ adjacent to d_1 (assume that d_1 is incident with y). Moreover, choose $c_2 = yz$ adjacent to d_2 . (If d_1 , d_2 and c_1 form a triangle, choose any $c_2 = yz$.) Then c_1 and c_2 form a path on three vertices. As n > 7 + 2 we may choose c_3 nonadjacent to any of the previously picked edges. Let $c_3 = uv$. It is easy to see that no matter how the destroyer moves, we may choose $c_4 \in \{y\}\{u, v\}$, say $c_4 = yu$, and then $c_5 \in \{v\}\{x, z\}$, say $c_5 = vx$, to obtain a 4-cycle (in this case (xyuv)). We remark that if $d_5 \notin \{v\}\{x, z\}$, then there are two possibilities for c_5 , namely vx and vz, and we prefer that one for which d_2 and c_5 are adjacent.

Let $X_1 = \{x, u\}, X_2 = \{y, v\}, X = X_1 \cup X_2$, and let Y be the set of the remaining n-4 vertices. In XY there are at least two destroyer's edges (either d_1 and d_2 or, if $d_5 \in \{v\}\{x, z\}, d_1$ and d_5). Split XY into pairs of edges $\{X_1\{a\}, X_2\{a\} : a \in Y\}$. Denote by A' those pairs in which the destroyer has picked an edge in the first five moves. In what follows we define a set $A = \{X_{i_1}\{a_1\}, X_{i_2}\{a_2\}, \ldots, X_{i_m}\{a_m\}\}, i_1, \ldots, i_m \in \{1, 2\}$. If there is $X_j\{a\} \in A', 1 \leq j \leq 2$, with both edges picked by the destroyer, then let both edges $X_{i_1}\{a_1\}$ and no edge of $X_{i_2}\{a_2\}$ are picked by the destroyer and in this case we set $A = A' \cup \{X_{i_2}\{a_2\}\}$. Otherwise A = A'. Note that in either case there are exactly two destroyer's edges in $X_{i_1}\{a_1\}$ and $X_{i_2}\{a_2\}, 2 \leq m \leq 5$, and there are at most five destroyer's edges in $X_{i_j}\{a_j\}, 1 \leq j \leq m$.

From the sixth move on we will use the following strategy:

1. If $d_i \in \langle Y \rangle$, choose $c_i \in X_{i_j}\{a_j\}, 3 \le j \le m$.

2. If $d_i \in X_j\{a\}$, $1 \le j \le 2$, such that $X_j\{a\} \notin A$, then choose $c_i \in X_j\{a\}$.

3. If $d_i \in X_{i_j}\{a_j\}, 1 \le j \le 2$, then choose $c_i \in X_{i_{j'}}\{a_{j'}\}, 1 \le j' \le 2$.

4. If $d_i \in X_{i_j}\{a_j\}, 3 \le j \le m$, then choose $c_i \in X_{i_{j'}}\{a_{j'}\}$ such that $3 \le j' \le m$ whenever possible.

We will proceed using this strategy until both edges are picked (by any of the players) in all $X_{i_j}\{a_j\}, 3 \leq j \leq m$. (This will happen as the game is finite.)

Thus, we may assume that there are no unpicked edges in $X_{i_j}\{a_j\}, 3 \le j \le m$. Let *B* consist of those $a_j, 3 \le j \le m$, for which the destroyer has picked both edges of $X_{i_j}\{a_j\}, |B| = k$, and let *l* be the number of the destroyer's edges in $\langle Y \rangle$. In what follows, the constructor will play $P_{n-4}^d(k, l)$ on *Y*. There are three cases possible:

1. *B* is empty. In this case $l \leq 3$ (as two from the destroyer's first five edges are in $X_{i_1}\{a_1\}$ and $X_{i_2}\{a_2\}$). By Theorem 4 if $n-4 \geq 5+3 \cdot 2$ the constructor wins the game $P_{n-4}^d(0,l)$.

2. |B| = 1. Then $l \leq 1$ and the constructor wins $P_{n-4}^d(1, l)$ if $n-4 \geq 5+1\cdot 3+1\cdot 2$, by Theorem 4. (If $d_i \in X_{i_j}\{a_j\}, 3 \leq j \leq m$, was the final edge chosen by the destroyer and it was not possible to choose $c_i \in X_{i_{j'}}\{a_{j'}\}, 3 \leq j' \leq m$, then we can

choose $c_i \in \langle Y \rangle$ according to the winning strategy for $P_{n-4}^d(1,l)$, $l \leq 1$, where the destroyer has already picked its first edge.)

3. |B| = 2. In this case l = 0, and the constructor wins $P_{n-4}^d(2,0)$ if $n-4 \ge 5+2\cdot 3$, by Theorem 4.

Since $n \ge 15$, in all three cases the constructor wins $P_{n-4}^d(k,l)$, i.e., he can construct an (n-4)-vertex path on Y whose endvertices are not in B.

Now proceed in our game: If $d_i \in \langle Y \rangle$ choose $c_i \in \langle Y \rangle$ according to the winning strategy for $P_{n-4}^d(k,l)$, while if $d_i \in X_j\{a\}$, $1 \leq j \leq 2$, choose $c_i \in X_j\{a\}$. (In the case $d_i \in X_{i_j}\{a_j\}$, $1 \leq j \leq 2$, choose $c_i \in X_{i_{j'}}\{a_{j'}\}$, $1 \leq j' \leq 2$.)

When the game is finished, there is a 4-cycle on X and an (n-4)-vertex path P on Y that does not have endvertices in B. Let e_1 and e_2 be the endvertices of P. Our strategy requires that at most one from $X_1\{e_1\}$, $X_2\{e_1\}$, $X_1\{e_2\}$, $X_2\{e_2\}$ has both edges picked by the destroyer, say $X_1\{e_1\}$ (in this case $e_1 = a_1$ or $e_1 = a_2$). Thus, there are constructor's edges in both $X_2\{e_1\}$ and $X_1\{e_2\}$, and these edges together with three edges of the 4-cycle (xyuv) and the edges of P form an n-vertex cycle, i.e., the constructor has won. \Box

We remark that $n \ge 15$ is our best estimate even for R_n^c , since the destroyer can choose $d_1 = wz$ and $d_2 = wx$ in the preceding proof and three edges from d_1, \ldots, d_4 will be in $\langle Y \rangle$.

Let $R_n^d(l)$ be a Ramsey-type game where the constructor wins if and only if he has selected all edges of some *n*-vertex cycle, however, the destroyer (who begins) had picked l edges before the game started. We have:

Theorem 6. If $n \ge 15 + 2l$ then the constructor wins the game $R_n^d(l)$.

The proof is similar to that of Theorem 5. The only difference is that there will be l more edges in $\langle Y \rangle$ and applying Theorem 4 we obtain the result.

4. Trees

Let T be a prescribed n-vertex tree. By T_n^d we denote a Ramsey-type game played on n vertices, where the destroyer begins and the constructor wins if and only if he has selected all edges of some T.

Let T be a tree. Suppose that the edge set of T can be decomposed into a subtree T_0 (having l edges) and a nonempty collection of paths, say P_1, \ldots, P_k , that may pairwise intersect only in the vertices of T_0 . If each of the paths contains at least $15 + 2 \lfloor \frac{l}{k} \rfloor$ vertices, we write $T \in \mathcal{T}$.

In this section we show that if $T \in \mathcal{T}$ then the constructor is a winner in T_n^d .

Lemma 7. Let G be a graph on k(m-1) + k' vertices with l edges, $1 \le k' \le k$. Let $X = \{x_1, \ldots, x_{k'}\}$ be some vertices of G, and let Y be the set of the remaining k(m-1) vertices. Moreover, let $k_1 + \cdots + k_{k'} = k$ and $k_i \ge 1, 1 \le i \le k'$. Then there are vertex sets X_1, \ldots, X_k each of size m, such that $|X_j \cap X| = 1, X_1 - X, X_2 - X, \ldots, X_k - X$ is a partition of Y, x_i is in k_i of the X_j 's, and each $\langle X_j \rangle$ contains at most $\lceil \frac{l}{k} \rceil$ edges, $1 \le j \le k$ and $1 \le i \le k'$.

Proof. Let X^2, X^3, \ldots, X^m be a partition of $Y, |X^2| = \cdots = |X^m| = k$, such that there is $m^0, 1 \le m^0 \le m$, for which if $x' \in X^j, 2 \le j < m^0$, then $X\{x'\}$ is nonempty, while if $x' \in X^j, m^0 < j \le m$, then $X\{x'\}$ is empty (moreover, if $m^0 > 1$, we may assume that XX^{m^0} is not empty). Let $X_1^1 = X_2^1 = \cdots = X_{k_1}^1 = \{x_1\}$,

 $\dots, X_{k_{k'-1}+1}^1 = \dots = X_{k_{k'}}^1 = \{x_{k'}\}. \text{ We construct } X_i^2, \dots, X_i^m \text{ such that } |X_i^j| = j, \\ \cup_{i=1}^k (X_i^j - X_i^{j-1}) = X^j, \text{ and if } \langle \cup_{i=1}^k (X_i^j - X) \rangle \text{ contains } l_j \text{ edges, then } \cup_{i=1}^k \langle X_i^j - X \rangle \\ \text{will have at most } \frac{l_j}{k} \text{ edges, } 1 \leq j \leq m.$

By induction, suppose that this is true for all $j', 2 \leq j' \leq j$. Let l' be the number of edges in $(\bigcup_{i=1}^{k} (X_i^j - X))X^{j+1}$. We construct X_i^{j+1} from X_i^j such that $\bigcup_{i=1}^{k} (X_i^{j+1} - X_i^j) = X^{j+1}$. Clearly, there are k! possibilities for constructing X_i^{j+1} 's in this way. Let e be an edge in $(X_i^j - X)X^{j+1}$. In (k-1)! cases we have $e \in \langle X_i^{j+1} \rangle$. Thus, the average number of new edges in $\bigcup_{i=1}^{k} \langle X^{j+1} - X \rangle$ is $\frac{l'(k-1)!}{k!} = \frac{l'}{k}$. Hence, the required sets X_i^{j+1} , $1 \leq i \leq k$, exist such that $\bigcup_{i=1}^{k} \langle X^{j+1} - X \rangle$ contains at most $\frac{l_j}{k}$ edges. Thus, there are at most $\frac{l_m}{k}$ edges in each $\langle X_i^m - X \rangle$.

However, there are still l'' edges in XY, $l'' > k(m^0 - 2)$, and in each $\langle X_i^m \rangle$ we have at most $m^0 - 1$ from these l'' edges. As $m^0 - 1 < \frac{l''}{k} + 1$, there are at most $\lceil \frac{l}{k} \rceil$ edges in each $\langle X_i^m \rangle$, $1 \le i \le k$. \Box

Theorem 8. The constructor wins the game T_n^d if $T \in \mathcal{T}$.

Proof. As $T \in \mathcal{T}$, it consists of a subtree T_0 and k paths P_1, \ldots, P_k . In the first l moves the constructor will construct T_0 . (Recall that l is the number of edges of T_0 .) This can be done step by step by joining a new vertex (that is not incident with the destroyer's edges) to the subtree of T_0 just constructed. When T_0 is constructed, there are l edges picked by the destroyer.

Let $X = \{x_1, \ldots, x_{k'}\}$ be the vertices of both T_0 and $\bigcup_{i=1}^k P_i$, each x_i lying on k_i paths from P_1, \ldots, P_k , and let Y' be the set of vertices that are not in T_0 (|Y'| = n - l - 1). Moreover, let Y be a subset of Y', $|Y| = 2k \lceil \frac{l}{k} \rceil$, such that there are no picked edges incident with vertices in Y' - Y. (Observe that $2l \leq 2k \lceil \frac{l}{k} \rceil < n - l - 1$.) Let X_1, \ldots, X_k be the sets whose existence is guaranteed by Lemma 7 ($\bigcup_{i=1}^k X_i = X \cup Y$). Then there are at most $\lceil \frac{l}{k} \rceil$ edges in each X_i , $1 \leq i \leq k$.

Now extend every X_i to X_i^* by adding some of those vertices from Y' - Y that are not in X_j^* , j < i, and do this so that X_i^* will have as many vertices as P_i . Since $|X_i^*| \ge 15 + 2\lceil \frac{l}{k} \rceil$ and there are at most $\lceil \frac{l}{k} \rceil$ destroyer's edges in $\langle X_i^* \rangle$, $1 \le i \le k$, by Theorem 6 the constructor has a winning strategy in $R^d_{|X_i^*|}(\lceil \frac{l}{k} \rceil)$ on X_i^* . Thus, if j > l and $d_j \in \langle X_i^* \rangle$, $1 \le i \le k$, choose $c_j \in \langle X_i^* \rangle$ according to this winning strategy to obtain T. \Box

Let T consist of a star T_0 and a path P_1 such that T_0 has $l = \lfloor \frac{n-15}{3} \rfloor$ edges, P_1 has n-l vertices $(n-l \ge 15+2l)$, and P_1 crosses T_0 in the central vertex. Then $T \in \mathcal{T}$ and the maximum degree in T equals $l+2 = \lfloor \frac{n-9}{3} \rfloor$. Thus, the constructor can win in T_n^d even if T contains a vertex of degree $\lfloor \frac{n-9}{3} \rfloor$.

ACKNOWLEDGEMENT

I would thank to J. Bukor and J. Širáň for their interest in this work and helpful comments.

References

- [1] Beck J., Van der Warden and Ramsey type games, Combinatorica 1 (1981), 103-116.
- [2] Erdős P., Selfridge J. L., On a combinatorial game, J. Comb. Theory (A) 14 (1973), 298-301.
- [3] Hahn G., Širáň J., Star wars, preprint (1995).