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ABsTRACT. It is known that for each d there exists a graph of diameter two and
maximum degree d which has at least f%] f%] vertices. In contrast with this, we
prove that for every surface S there is a constant dg such that each graph of diameter
two and maximum degree d > dg, which is embeddable in S, has at most L%dj +1
vertices. Moreover, this upper bound is best possible, and we show that extremal
graphs can be found among surface triangulations.
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1. INTRODUCTION

Extremal graphs of given diameter and maximum degree have been a subject of
investigation for many years. Although several deep results have been obtained in
the field, many questions still remain open while new ones emerge. One of the most
intriguing problems is that of determining the largest number, f(d), of vertices in
a graph of diameter two and maximum degree d. Trivially, such a graph can have
at most d? + 1 vertices. However, it is non-trivial to show (cf. [4]) that this bound
is attained only for d = 1, 2, 3, 7, and possibly 57 (the corresponding graphs are
known as Moore graphs of diameter two). Results of [1] show that f(d) < d? — 1
for the remaining values of d. So far we do not have satisfactory lower bounds
(see [3] for a table of bounds on f(d) for d < 15); the general current record
construction comes from forgetting arrows in line digraphs of complete digraphs,
giving f(d) > [4][4£2] for each d.

In view of these facts, it seems reasonable to study extremal graphs of diameter
two and maximum degree d subject to further restrictions. Omne of the possible
ways was proposed in [2] where it is proved that a planar graph of diameter two
and maximum degree d > 8 has at most L%d] + 1 vertices. In addition, as shown in
[5], this bound is best possible in the following (strong) sense: For each d > 8 there
exists a planar triangulation of diameter two and maximum degree d that contains
exactly |2d] + 1 vertices.

The aim of this paper is to generalize the above results to graphs embedded in
an arbitrary (orientable or nonorientable) surface, provided that d is large enough.
More specifically, we prove:
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Theorem 1. For every surface S there erists a constant dg such that the fol-
lowing holds: Every graph of diameter two and maximum degree d > dg which is
embeddable in S contains at most |3d] + 1 vertices.

This is, in a sense, a surprising result. As already mentioned, the number of
vertices in a largest graph of diameter two and maximum degree d is quadratic (in
d). However, if restricted to graphs embeddable in a fixed surface, we have a linear
upper bound which, for sufficiently large d, does not depend on the surface at all
and is the same as for the plane!

We also show that the bound of Theorem 1 is best possible, even in the class of
surface triangulations:

Theorem 2. Fvery closed surface S admits a triangulation of diameter two and
maximum degree d > dg which contains ezxactly [%dJ + 1 vertices.

Proofs are presented in Sections 3 and 4; necessary background and auxiliary
results can be found in Section 2.

2. PRELIMINARIES

Graphs in our paper are finite, undirected, without loops or parallel edges. As
usual, if G is a graph, the symbols V(G) and E(G) are reserved for the sets of
vertices and edges of G, respectively. The degree of a vertex u in G is denoted by
degg(u); the symbol distg(u,v) stands for the distance between the vertices u and
vin G.

Let S be a closed surface (i.e., compact 2-manifold), and let G be a graph
embedded in S. Components of G \ S are called faces of the embedding; a face is
cellular if it is homeomorphic to an open disc. If the embedding of G in § has f
cellular faces, the well known Euler-Poincaré formula yields the inequality (cf. [6])

(0) V(&) - E@G)|+ f = x(S5) ,

where x(S5) is the Euler characteristic of S. (For the sake of completeness we note
that x(S) = 2 — 2¢g if S is an orientable surface of genus g, and x(S) =2 —h if S
is a nonorientable surface of crosscap number h.)

Let Dr=Dy(z,y|t;) be the graph with V(Dy)={z,y,t1,t2,...,tx} and E(Dg)=
{zt;,yt; ; 1 < i <k}. The graph Dj, will be called a subdivided dipole for obvious
reasons: It can be obtained from a ”dipole” on two vertices and k parallel edges by
subdividing each edge once. If M = {t; ; 1 < i < k}, we will occasionally use the
abbreviated notation Dy = D(z,y|M) if no confusion is likely.

For the purpose of our investigation, subdivided dipoles are of principal impor-
tance. We start with a simple observation.

Lemma 3. Let G be a planar graph containing a subdivided dipole Di,=Dy(x, y|t;)
as a subgraph. Let z be a vertex in V(G) \ V(Dy) such that distg(z,t;) < 2 for
1<i<k. Ifk>5, then z is adjacent to x or toy in G.

Proof. For the sake of simplicity we shall use the same symbols for graphs as well

as for their plane embeddings. Let G be a plane embedding of our graph and let

Dy be the induced embedding of the subdivided dipole. Since k& > 5, there is a

sequence of quadrilateral faces Fi, Fy, F3, Fy of D such that none of them is an

outer (i.e., unbounded) face and, for j = 1,2,3, the boundary cycles of F; and
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Fj41 share a path of length two. (For instance, we may without loss of generality
assume that the boundary cycle of Fj is wt;ytj11, 1 < j < 4.) Let z be a vertex
not in the subdivided dipole, with distg(z,t;) < 2, 1 < i < k. It is easy to check
that no matter where z appears in the embedding (that is, either inside one of
the quadrilaterals F; or somewhere outside), the only way to meet the distance
requirement is to have z joined either to x or to y. [

As the reader may have observed, the key to the above proof is the existence of
a sequence of four quadrilateral faces in a drawing of the subdivided dipole within
a bounded planar region, such that boundary cycles of consecutive faces share a
path of length two. Let us call such a configuration a 4-fan. We now generalize
this principle to graphs embedded in an arbitrary closed surface.

Lemma 4. Let G be a graph embedded in a closed surface S, and let k > 5 if S is
a sphere, and k > 17 — 8x(S) otherwise. Assume that the subdivided dipole Dy =
Dy (z,ylt;) is a subgraph of G. Let z € V(G) \ V(Dy) be such that distg(z,t;) < 2
for 1 <i < k. Then either x ory is adjacent to z in G.

Proof. We may assume that S is not a sphere (cf. Lemma 3). Let G be a graph
with the above properties, embedded in S, and let D be the induced embedding of
the subdivided dipole.In this embedding of Dy (which need not be cellular), let a
be the total number of 2-cell faces and let a4 be the number of 2-cell faces that are
bounded by quadrilaterals. As there are 2k edges and k + 2 vertices involved in Dy,
by (0) we have (2+k) —2k+a > x(5); that is, a > k4 x(S) — 2. Since the length of
a boundary walk in Dy, is always a multiple of four, a standard counting argument
(the sum of lengths of all boundary walks gives twice the number of edges) yields
4k > 4as+8(a—aq) = 8a —4ayg > 8(k+ x(S) —2) —4ay; ie., ag > k+2(x(S) —2).

Let us now have a close look at the induced embedding Dy on S. Consider a
small neighbourhood of z with a fixed local orientation. We may assume, without
loss of generality, that this local orientation induces the following cyclic ordering
of edges of Dy emanating from x: (ztq,zts,...,zt;). For 1 < i < k, let F; be
the face of Dy whose facial walk contains the path t;zt;11 (indices mod k). It
may happen that F; = Fj; if ¢ # j; also, some of these faces may be non-cellular
(the union of all F;’s is S\ Dy). Nevertheless, a4 of them must be cellular and
bounded by quadrangles. Since k > 8(2 — x(5)), we have 2(x(S) — 2) > — 1k, and
so k+2(x(S) —2) > 3k, which (combined with the inequality at the end of the last
paragraph) gives a4 > %k. Applying the pigeonhole principle (note that we always
have k > 5) we see that there is a collection of four consecutive cellular faces Fj,
Fjt1, Fj42, Fj43 (subscripts mod k), all bounded by quadrangles. The union of
these four faces is homeomorphic to a (topological) disc, which gives rise to a 4-fan
configuration (see the remark after Lemma 3).

The rest of the proof is similar to that of Lemma 3: If z € V(G) \ V(Dg), no
matter which ”portion”, Fj, of the surface S it appears in, the only way to fulfil
the distance requirements is to have z joined to at least one of z, y (thanks to the
existence of the planar 4-fan configuration in S). O

Our last auxiliary result concerns dipoles where paths of length two are re-
placed by paths of length three. Formally, let D; = Dj(z,y|zi,y;) be the graph
with the vertex set V(Dy) = {z,y,21,y1,--., %k, Yr} and the edge set E(Dj}) =
{zz;, z;y;,y;y 3 1 < i < k}; this graph will be referred to as a twice-subdivided
dipole.
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Lemma 5. Let G be a graph embedded in a closed surface S, and let k > 5 if S is
a sphere and k > 17—8x(S) otherwise. Assume that G contains a twice-subdivided
dipole Dy (x,y|zi,y;) as a subgraph, and let yx; ¢ E(G) for each i, 1 <1 < k. Let
z € V(G)\ V(Dy) be a vertex for which distq(z,2;) < 2, 1 < i < k. Then the
vertices z and x must be adjacent in G.

Proof. Let G' be embedded in S and let D} be the induced embedding of the twice-
subdivided dipole. We thus have a situation similar to that in the proof of Lemma, 4;
the only (and inessential) difference being that dipole paths have length three. The
previous proof now implies the existence of four consecutive cellular faces incident
to z, bounded by hexagons and successively sharing paths of length three; without
loss of generality we may assume the notation to be chosen so that these faces are
Fy,...,Fy and their face walks are (zz;y;yy;+1%i+1), 1 < i < 4. Because of the
distance condition for the vertex z € V(G) \ V(D5) and the absence of edges yz;
in G, it is routine to check that the vertices  and z must be adjacent (no matter
where z appears - either inside one of the F;’s or inside other faces on S). O

3. PROOF OF THEOREM 1

Throughout, let ¢ = 5 if S is a sphere, and o = 17 — 8x(S) otherwise. Let
ds = 4(0 — 1)? + 2. Assume the contrary and let G be a graph with the following
properties:

(1) G has diameter two ,

(2) the maximum degree dg of G is at least dg

(3) G is embeddable in S , and

4) V(G)| > |3da] +2 .
For each z € V(G) let N;(z) = {y € V(G) : distg(z,y) = i}. It follows from (4)
that |Na(z)| > |2dg| + 1 for each z € V(G).

We first derive some useful facts about the structure of our counterexample G
and then estimate its number of vertices in order to obtain a contradiction with
(4).

Fix a vertex u in G of degree dg and choose a vertex v € Na(u) in such way that
the cardinality of the set A = Ny(u) N Ni(v) is largest possible, say, g. Consider
now an arbitrary vertex z € Ny(u). Then, if z ¢ A, there is a vertex y such that
vy,yx € E(G) (because the diameter of G is two) and either y € Ny(u) or y €
Ny (u). Accordingly, we partition the set Ny (u)\ A into sets By, ..., By, C1,...,Cy
for some m and n, subject to the following requirements:

(5) for 1 < i < m the sets B; = {b;1,...,bik, } are such that there are m
distinct vertices 71,. ..,y € A for which r;b; ; € E(G), 1 < j <k; ;
(6) for 1 < i <nthesets C; ={c;1,...,ci,} are such that there are n distinct
vertices s1,..., S, € Na(u) N N1(v) for which s;c;; € E(G), 1 <j<lI;.
For technical reasons we assume that k1 > ko > --- >k, and Iy > --- > 1,,. (Note
that a partition of Ny(u) \ A with all the above properties need not be unique.)
We begin our analysis of the graph G by proving that both m and n are < o —1.
Recalling that [No(u)| > |3da]| + 1, let y € Na(u), y # v. Now, if (say) m > o
then Lemma 5 applied to the twice-subdivided dipole D, (u, v|b; 1,7;) in the graph
G of diameter two shows that yu € E(G), contrary to the choice of y. Analogously,
if n > o then Lemma 5 applied to D} (u,v|c; 1,s;) yields a contradiction. (The
only case which needs care occurs when Ny(u) = {v} U {s1,...,s,}; but then
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n > %s > ¢ and we may apply Lemma 5 to D} _,(u,v|c; 1, s;) and choose y = sy,.)
Thus, n<o—1andn<o—1.

As the next step we show that at least one of the numbers ¢ = |A| and k; is at
least o. Indeed, suppose that both are at most o — 1. By the choice of the set A
we have ¢ > [y (> 12 > ...). Therefore, taking into account that m,n < o — 1, we
obtain dg = [N1(w)| = ¢+> ., | Bil +> i<, |Cil < g+mki4nly < (14n)g+mk; <

(0 — 1)(20 — 1), which contradicts our assumption that dg > dg. So, either ¢ > o
or k1 > 0. We now investigate these two cases separately.

Case 1: ¢ > 0. Let A={a;; 1 <i<gq}. Applying Lemma 4 to the subdivided
dipole D, (u,v|A) we see that yv € E(G) for every y € No(u), y # v. Our aim is to
show that in this case [; < o — 1 whereas k1 > o.

Suppose first that I; > o. Invoking Lemma 4 again, this time to Dy, (u, s1|C1),
it follows that ys; € E(G) for each y € No(u), y # v and y # s1. The above facts
imply that on the set Na(u) we have a subdivided dipole D(v, s1|Na(u)\{v, s1}) with
|No(u) \ {v,s1}| > |3dc] — 1 > 0. Lemma 4 then implies that either us; € E(G)
or uv € F(G), which is absurd. Thus, l; <o — 1.

Now, suppose that k; < o — 1. Recalling that m,n,l; < o —1, we have |Ny(u) \
Al =Y e ki + > ;e li < mki 4+ nly < 2(c — 1)%. On the other hand, since
|Na(u)| > |2dg]|+1, we have [Ny (u)\ A| = degg(u) —q > degg(v) —q = (|Na(u)| —
1+g) —q > |3dc]. Combining the two inequalities for |Ni(u) \ A| we obtain
|ide] < 2(oc — 1)2, which contradicts the choice of dg. Therefore k1 > o, as
claimed.

We are now ready to finish the analysis of Case 1. With help of Lemma 4
applied to the subdivided dipole Dy, (u,r1|B1) we deduce that yr; € F(G) for each
y € Na(u). But we already know (see the beginning of Case 1) that yv € E(G) for
each y € Ny(u), y # v. We therefore have a subdivided dipole D(rq,v|Na(u)\{v}),
with |Na(u) \ {v}| > o. Lemma 4 now implies that for each z € Ny(u), z # 1
we have either xv € E(G) or zr; € E(G); in particular, zr;y € E(G) for each
xz € Ny(u) \ A. Recalling that for each y € Na(u) \ {v} we have yv,yr; € E(G),
we successively obtain 2dg > degg(v) + degg(r1) > (|Na(uw)| — 1+ q) + (| Na(u)| +
IN1(u)| —g+1) = |[V(G)| + |Na(u)| = 1 > [V(G)| + | 3d¢]- It follows that [V (G)| <
2dg — |3dc] < |2dg] + 1, which contradicts (4).

Case 2: k1 > o; we may now assume that ¢ < ¢ — 1. Applying Lemma 4 to the
subdivided dipole D(u,r1|B1) whose "middle layer” is formed by the k; vertices in
Bi, we have yr; € E(QG) for each y € No(u). Since dg > degg(r1) > |No(u)| + k1 +
1> L%ng + k1 + 2, it follows that |N1(u) \ Bl| =dg— k1 > L%ng + 2. Now, if
0 <ky <o—1, then |[N1(u)\ B1| => 1", ki-l—Z?:llj—i-q <(m—1ky+nli+q<
(m—1)ks+ (n+1)g < (m+n)(c—1) <2(c—1)2% and so [3dg] +2 < 2(0c — 1),
contrary to our choice of dg > dg. Therefore, ky > 0.

We may now apply Lemma 4 to D, (u, 73| Bs2) which gives yro € E(G) for each
y € Na(u). But then there is the subdivided dipole D(ry,r2|Na(u)) to which
Lemma 4 applies; as the result we have the fact that for each € Ny (u) \ {r1,72},
either zry € E(G) or zry € E(G). Summing up, we obtain 2dg > degg(ri) +
degg (r2) > 2|N2(u)| + (IN1(u)| = 2) + 2 = [V(G)| + [N2(u)| = 1 > |[V(G)| + | 3dc],
and hence |V (G)| < 2dg — |3dc| < |3de] + 1. This final contradiction completes
the proof of Theorem 1. [
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4. PROOF OF THEOREM 2

Consider the graph G in Fig. 1; this graph was constructed in [2] to show that
L%ng + 1 is the best possible upper bound for the number of vertices in a planar
graph of diameter two and maximum degree dg. It follows from Theorem 1 that
the very same graph can serve as extremal graph for an arbitrary fixed surface S,
provided that dg > ds. However, our goal is to construct a triangulation of S
with the required properties. This will be done by a suitable modification of the
graph G. (Observe that degg(b1) = degg(b2) = dg, and degg(bs) = dg or dg — 1
according as dg is even or odd; the remaining vertices have degree two.)

Fig. 1: The graph G.

Let S be a surface other than the sphere (for the ”spherical” result we refer
to [5]) and let G be as in Fig. 1 with dg = d > dg, where dg is taken from the
preceding proof. Let r = 8 —3x(S) =2+ 3 (0 —1). Since x(S) < 1, we have o > 9,
and then 2+ 3 (0 —1) < 2(0—1)2-3 < 95=7; hence r < | 9457 |. Let the graph G’ be
obtained from G by deleting the vertices aq,...,a,. Now, we add to G’ the edges
ajaipq forr+2<i< |92 [41] <i<d—4,and d—2 < i < |2d] — 3. Further,
we add six more edges, namely, Ad—20d_1|, G d_1|Gd1; Gr41G a1 s Gry10|3q)_ 2,

4 3q)—20| 441, and aq_1a4—2, and denote the resulting graph by H, see Fig. 2.
(The added edges are drawn thin.)

It is obvious that H is a planar graph with maximum degree d, and all but one
of its faces are bounded by triangles, the exceptional face being quadrilateral (the
outer face in Fig. 2). Later in the construction, we shall only work with the (closed)
topological disc bounded by the quadrangle (bya,12b2a,-41); that is, we shall remove
the outer face of the embedding of H in Fig. 2. Note that degy(b1) = degm (b2) =
d—r, degg(bs) < d, and all remaining vertices of H have degree at most five.

Let m = 3 — x(S) and let D,, = D,,(z,y|c;) be a subdivided dipole whose
"middle layer” is formed by vertices ci,...,¢m. It is well known (and easy to
see) that D,, has a 2-cell embedding in S with exactly one face, bounded by a
closed walk of length 4m. In terms of vertices, the boundary walk has the form
(X, Ciys Yy Cins Ty Cigy Yy Cigy e - oy Ty Cin, 1Y, Cin, ), Where {31,199, ... ,42m}={1,2,...,m}
and each ¢, 1 <1 < m, appears exactly twice among the subscripts 7;. We therefore
represent this face as a 4m-gon with vertices labelled z,c;,,vy,c;,, etc., with the
appropriate pairs of sides identified. Inside this 4m-gon we now insert 2m + 1 new
vertices 2o, 21, - - -, Z2m, as well as the following 10m — 1 new edges (see Fig. 3; we
remark that the new edges are again pictured with thin lines): z;z, z;y (0 < j <
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2m); z0Ci,; 2125, 25¢; (2 < j < 2m); zjzj41 (2 < j < 2m —1). We thus obtain
an embedding of a graph (say, K) in S where all faces are triangular, except one
(the shaded quadrangle in Fig. 3). Note that K contains neither parallel edges nor
loops, |V(K)| =3m+3, degk (x) = degr (y) = 3m+1, degx (21) = 2m + 1, and all
other vertices of K have degree at most 6.

b

SOr41

Fig. 2: The disc embedding of the graph H.

As the last step, we replace the shaded quadrangle in Fig. 3 by the topological
disc from Fig. 2 bounded by the quadrilateral (bja,42b2a,41) in such way that we
identify vertices by, a,12,ba,ary1 With z, zg,y, 21, respectively (the corresponding
edges are identified as well). We thus obtain a triangulation T' of the surface S,
with no loops or parallel edges. It is easy to check that the diameter of T is
two. The degree of the vertex b; = z in T is equal to degy(b1) + degx () — 2 =
(d—71)4 (3m + 1) — 2 = d; the same holds for the vertex bs = y. The degree of
21 = apy1 in T does not exceed degp(ary1) + degi (z1) —2 = 2m + 3 < d, and the
remaining vertices have degree < 6 in T'. Finally, |V(T)| = |V(H)|+ |[V(K)| -4 =
V(@) -r+|V(K)—4=(2d]+1)—(83m—1)+(3m+3)—4=|3d] +1, and
hence T is a triangulation of S with the required properties. [J

Ciom Yy
O

Fig. 3: The graph K.
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