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ABSTRACT. Let D be a regular digraph with radius s. Then D is a radially Moore
digraph if it has the maximum possible number of nodes and the diameter of D does
not exceed s+ 1. We show that for each s and ¢ there exists a regular radially Moore
digraph of degree t with radius s. Moreover, we give an upper bound for the number
of central nodes in radially Moore digraphs with degree two.
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Regular digraphs with small distances are especially well suited for designing
building-block switching systems, communication networks, and distributed com-
puter systems. An ideal structure would yield a regular digraph with prescribed
diameter on the theoretically maximum possible number of nodes. However, such
digraphs are very rare. Moreover, it is not always necessary to have small distances
from (or to) all nodes. Hence, it seems to be reasonable to investigate regular di-
graphs with prescribed radius on the theoretically maximum possible number of
nodes, in which a given subset of nodes lies in the center. In this paper such di-
graphs are constructed for one central node. Moreover, it is shown that those of
degree two have less than a half of their nodes in the center.

Let D be a digraph, i.e. a directed graph without loops or multiple arcs. As
usual, by V(D) we denote the node set of D and by E(D) the arc set of D. An
arc from u to v is denoted by (u,v). By idp(u) we denote the input degree and
by odp(u) the output degree of a node v € V(D). If u,v € V(D) then dp(u,v)
denotes the length of a shortest path from u to v in D. Let D be a digraph and
u € V(D). Then:

out-eccentricity of the node u is eh(u) = max (dp(u,v));
veV (D)

in-eccentricity of the node u is ep(u) = max (dp(v,u));
veV (D)

eccentricity of the node u is ep(u) = max (e (u), e (u)) -

Using various eccentricities we obtain various radii and various centers. The radius
r(D) (out-radius r* (D), in-radius r~(D)) is the minimum value of ep(u) (ef,(u),
ep(u)), u € V(D). The nodes with the minimum eccentricity (out-eccentricity,
in-eccentricity) are called central (out-central, in-central); and the set of central
(out central, in-central) nodes is denoted by C(D) (C* (D), C~(D)). We remark
that the diameter of D, d(D), is the maximum value of e}, (u), u € V(D).
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A digraph D is regular of degree t if idp(u) = odp(u) =t for each u € V(D).
Clearly, a regular digraph D of degree ¢t with diameter s contains at most

Myg=1+t+t>+---+1°

nodes. If D has exactly M, ; nodes, then D is called a Moore digraph. It is known
that Moore digraphs exist only for s = 1 or t = 1, namely a complete digraph K1
and a directed cycle Csy1, respectively (see [2]). The question of how ”close” to the
Moore bound M ; we can go if s > 1 and ¢ > 1 is extensively studied by several
authors (see e.g. [1], [3], and [4]).

We present here another attempt to this problem. Namely, we decrease the
strong condition that the diameter equals s, instead of decreasing the number of
nodes. Clearly, a regular digraph of degree ¢ with radius s contains at most M, ;
nodes. Hence, we can ask whether there are regular digraphs of degree ¢t on M, ;
nodes with diameter at most s+1 and the radius s. If a digraph satisfy all these
conditions, it will be called a radially Moore digraph.

In what follows we show that radially Moore digraphs exist for each positive s
and t¢:

Theorem 1. Let s and t be positive integers. Then there exists a radially Moore
digraph of degree t with radius s.

Proof. We construct a digraph D, and then we show that D has the required
properties.

Let V(D) = {0} U{erea...eq : 1 < s <s,and1 <e <t 1 <1< s}
Thus, V(D) consists of strings from ¢ symbols, each of length at most s. Hence
\V(D)| = M,,. In what follows let /(a) denote the length of string a € V(D).
Moreover, we define @ = ey ...ey if a =e1e1...€169...€4, €3 # €1. Let

E(D) = {(a,ae) : l(a) <s—1, and 1 <e <t}
U {(a,ae) : l(a) =s,a#0, and 1 <e <t}
U{(a,e): l(a)=s,a=0ie.a=e1...e1, and 1 <e<t,e#er}

U {(a,0): I(a) = s, and a = 0}.

)il
)l

Clearly, odp(a) = t if a € V(D). Let a = e1es...eg € V(D), a # (. Then
(er1€3...es_1,a) € E(D). Moreover, (b,a) € E(D) foreachb=-¢...ee1ea...€5_1,
e#ey, 1 <e<t andl(b) = s. Hence, idp(a) =t if a # (). Clearly also idp(0) = t,
and hence D is regular of degree ¢.

Consider the following system of sets of nodes of D. Let

Si={52(e), S (a): 1<e<t, l(a) < s—i, a0},

(2

where 0 <7 < s and

S2(e)

(2

{eb: 1(b) <i—1}, and
Si (a) '

{ab: 1(b) = i}.

Thus, Sl.A (e) consists of all nodes of D that are at distance at most ¢ — 1 from
e, l(e) = 1, and S; (a) consists of all nodes of D that are at distance exactly ¢
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from a, 1 < I(a) < s —i. Clearly, S5*(e) = 0 and S5 (a) = 0, a # 0, and hence,
So={S; (a): a€ V(D) —{0}} =V (D) — {0} and S; = {S2(e) : 1 <e < t}.

Let A C V(D). Denote N(A) = AU{be V(D) : (a,b) € E(D) for some a € A}.
We show that for each A € S;, 0 < i < s, there is B € S;;1 such that N(A) D B.
Distinguish the following cases:

(1) A= S8"(e). Since i < s, the length of each string in A is less than s. Hence,
N(4) = 531 (e)

S; (a) and I(a) < s—i. Then N(A) D S;;,(a).

S; (a), l(a) = s—i, and a = ee...e. Then N(A) D Sz-l—l

e, 1 <e <t

S; (a), l(a) =s—i,and a = e...ee1...ey, €1 # e. Then N(A) D

ir1(@),a=e1...eq.

Hence, for each A € Si there is B € S;11 such that N(A) O B. Since Sy =
V(D) — {0} and N(S2(e)) = V(D) for each e, 1 < e < t, we have ef(a) < s+1
for each a € V(D) — {0#}. Moreover, it is easy to see that e} ()) = s, and hence
d(D) < s+1.

Finally, we show e, (0) = s. Clearly, if (b,e) € E(D), 1 < e < t, then (b,0) €
E(D) as well. Let a € V(D). Since thereise, 1 < e < t, such that 1 < dp(a,e) < s,
we have e, (0) < s. Thus ep(0) < s, and hence 7(D) =s. O

)
)

(4)

SRS

(2
(3 (e’) for each

!/

oo ©
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We remark that in the case s =1 or ¢ = 1 we obtain the Moore digraphs Ky,
and Cs41, respectively. However, in general we have |C(D)| = 1 and |CT(D)| =
|C~(D)| = t+1, since it is easy to see that the out-neighbors of () are in C* (D),
and the in-neighbors of () are in C~ (D). It can be interesting to find radially Moore
digraphs with more central nodes, since one can expect that such digraphs would
have properties more close to Moore digraphs. However, we show that |C(D)| <
:|V(D)| if D is a radially Moore digraph with degree 2.

In what follows, by out-V we denote a digraph on three nodes, say x, y, and z,
with exactly two arcs (x,y) and (z, z). By in-V is denoted a digraph obtained from
out-V by reversing the arcs. In the proof of Theorem 3 we use the following lemma:

Lemma 2. Let D be a regular digraph of degree 2 on M o nodes with out-radius
s, s > 1. Then the subgraph of D induced by out-central nodes consists of a couple
of isolated nodes and out-V’s.

Proof. Let D be a digraph satisfying the assumptions of lemma, and let u,v €
C*(D), (u,v) € E(D). Since D is regular of degree 2 on M, 5 nodes and u € C* (D),
there is exactly one u — x path of length at most s for each x € V(D). Thus, the
nodes of D can be associated with 0-1 strings, each of length at most s, such that
u=0, v =0, and if [(a) < s then (a,a0), (a,al) € E(D). We remark that by I(a)
is denoted the length of string a € V(D).

Since u € C*(D), we have dp(v,z) < s — 1 for each z = Oa,, [(0a,) < s. Since
v € Ct(D), for each node y € {P} U{1b: (b) < s — 1}, there is z = Oa, I(z) = s,
such that (z,y) € E(D). Since there is exactly 2°7! z’s and 2° y’s, there are no
other arcs from the x’s. Moreover, since idp(w) = 2 for each w € V(D), also the
nodes la of length s are joined only to nodes () and 0b, I(b) < s — 1. Hence, also
1€ CH(D).

Suppose that there is z € CT(D) such that (z,u) € E(D). Clearly I(z) =
Since both 0 and 1 are in CT (D), we can assume that z = Oa,, l(a,) = s — 1. Since
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(z,u) € E(D), we have dp(z,a) < s for each a € V(D), l(a) < s. Thus, the second
arc starting in z terminates in a node 2z’ = la,s with length s. Moreover, the two
arcs starting in 2’ terminate in nodes zy = Oa,y and 27 = Oar, both with length
s, etc. Thus, there is exactly 1 + 4 + - -- 4+ 4° nodes 1la, l(a) = s — 1, for some c.
However, since 1 +4 + - -- + 4¢ is odd, we have s = 1, a contradiction. Hence, the
subgraph of D induced by C* (D) contains no directed path of length two.

Suppose that there is z € CT(D) such that (z,v) € E(D). Since v = 0, we have
z = la, and l(z) = s. As shown above, also the second arc starting in z terminates
in a node, say 2/, such that 2’ = 0a,. However, it means that there are at least
two different paths from z to 2/, both with length at most s. Hence, z ¢ CT (D),
a contradiction. Hence, the subgraph of D induced by C* (D) consists of isolated
nodes and out-V’s. [

Although the digraphs constructed in the proof of Theorem 1 have only one
central node, it is not complicated to find a radially Moore digraph of degree 2
with radius 2, containing exactly two central nodes. However, we have the following
theorem:

Theorem 3. Let D be a radially Moore digraph of degree 2 with radius s, s > 1.
Then |C(D)| < 3|V (D).

Proof. Let D be a digraph and let A C V(D). Then by (A) is denoted the subgraph
of D induced by A.

Let D be a digraph satisfying the assumptions of theorem. By Lemma 2 the
(CT(D)) consists of a collection of isolated nodes and out-V’s. By reversing the
arcs in the proof of Lemma 2, it can be shown that (C~ (D)) consists of a collection
of isolated nodes and in-V’s. Hence, (C(D)) consists of a collection of isolated
nodes and arcs.

Let ¢; denotes the number of isolated nodes in (C(D)), and let 1cy denotes
the number of isolated arcs in (C(D)). Then ¢ = |C(D)| = ¢1 + ¢c2. Let b =
V(D) — C(D)|, and let a denotes the number of arcs that have one endnode in
C(D) and the second in V(D) —C(D). Clearly, a = 4-c1+6-%. Moreover a < 4-b,
since there are exactly four arcs incident with each node in D. In what follows we
give a better upper bound for a.

U o
!/
v (//U\ o
Figure 1

Let u,v € C(D), (u,v) € E(D). Then there are u',v’ € V(D), different from
w and v, such that (u,u), (v',v) € E(D), and ' € CT(D) and v € C~(D), by
Lemma 2 (see Figure 1). Since s > 1 we have v’ # v and v',v" ¢ C(D). By
Lemma 2 the nodes adjacent with u’ that are different from u, are not in C*(D),
and hence, they are not in C'(D). Analogously, the nodes adjacent with v’ that are
different from v, are not in C'(D).
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For each (u,v) in (C(D)), denote by E,,y those arcs incident with u’ or v/,
that are not incident with u or v. The arcs from E’s are in (V(D) — C(D)), and
hence, we can subtract their number when bounding a. Clearly, |E(, )| > 4 for
each (u,v) in (C(D)). Moreover, each arc belongs to at most two E’s, since one
endnode can be in C* (D), while the other one can be in C~ (D). Thus, we have
a<4-b— % -4-%. As shown above we have a = 4-¢;+6- %, and hence ¢; +ca < b.
However, since |V(D)| = b + c is odd, we have ¢ < b as required. [

It remains an open problem to bound the number of central nodes in radially
Moore digraphs of degree greater than two.

CONCLUDING REMARKS

The author would like to dedicate this paper to memory of prof. Stefan Znam,
who suggested the radially Moore digraphs just a week before he tragically died, in
July 1993.
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