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ABSTRACT. We show that the out-radius and the radius grow linearly, or “almost”
linearly, in iterated line digraphs. Further, iterated line digraphs with a prescribed
out-center, or a center, are constructed. It is shown that not every line digraph is
admissible as an out-center of line digraph.
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1. INTRODUCTION

Line digraphs are useful and important in various problems. In this paper we
concentrate on iterated line digraphs, and on their radii (in [4] the diameter and
average distance of iterated line digraphs are studied). In [1] Aigner proved the
following theorem:

Theorem A. If D is a strongly connected digraph then r+(D) < rt(L(D)) <
rt(D) + 1.

Here, T denotes the out-radius of a digraph. We extend this result to a larger
class of digraphs (see Lemma 3.2). This enables us to examine the behavior of radii
of iterated line digraphs (Theorems 3.3, 3.4, and 3.6). In particular, it is shown
that if D is strongly connected then the out-radius of L*(D) increases linearly with
i while the radius of Lf(D) differs from i by at most a constant (depending only
on D). This should be contrasted with iterated line graphs, the radius of which
satisfies inequalities [6]:

i —/2logy i+ cqg < r(LY(G)) < i —+/2logy i + g,
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and hence its growth is slower than linear. (Here, cg and cj; are constants depending
only on G, and G is any graph different from a path, a cycle, and a claw K3 1.)

Further, we consider centers in iterated line digraphs. It is easily seen that for
every digraph D there is a digraph H having D as its center (for the graph version of
this result, see [3, p.41]). We generalize this observation by investigating conditions
under which Li(D) is a center of some L*(H) for all i (or for all i up to some fixed
number). Finally, we show that there exist line digraphs which are not out-centers
of any line digraphs. This may again be compared with the case of graphs, where
every line graph serves as a center of some line graph [5].

The outline of this paper is as follows. In section 2 we build our basic tool
for counting the distances in iterated line digraphs. In section 3 we examine the
functions r*(L*(D)) and 7(L*(D)). Finally, section 4 is devoted to out-centers and
centers in iterated line digraphs.

2. PRELIMINARIES

Let D be a digraph. As usual, by V(D) we denote the node set of D and by
E(D) the arc set of D; idp(u) denotes the input degree and odp(u) the output
degree of a node u in D. If u and v are nodes in D then dp(u,v) denotes the
length of a shortest path from u to v in D. If there is no path from u to v we set
dp(u,v) = co. We note that throughout the paper, by a path (a cycle) we always
mean a directed path (a directed cycle).

The line digraph L(D) of a digraph D is a digraph whose nodes are the arcs of
D, with two nodes uv and zy joined by an arc in L(D) if and only if v = 2. We
remark that if D has no arcs then L(D) is an empty digraph. By L°(D) we denote
the digraph D. The i-iterated line digraph of D, L*(D), is L(L*~'(D)) where i > 1.

Let u be a node in D. Then:

out-eccentricity of u is e} (u) = max{dp(u,v) : v € V(D)};
in-eccentricity of u is ep(u) = max{dp(v,u): v e V(D)};
eccentricity of u is ep(u) = max{ef, (u),ep(u)} .
Using various eccentricities we obtain various radii and various centers. The out-
radius r¥(D) (in-radius r~ (D), radius r(D)) is the minimum value of e}, (u) (e}, (u),
ep(u)) over all nodes u of D; and the out-center C* (D) (in-center C~ (D), center
C(D)) is the subgraph of D induced by nodes with the minimum out-eccentricity
(in-eccentricity, eccentricity).

Let D’ arise from D by reversing the orientation of all arcs. Then ep, (u) = e} (u)
for every node u in D, and hence, 7+ (D) = r~(D') and C*(D) = C~(D’). This
observation allows us to restrict our considerations to radii 7™ and r and to centers
CT and C only.

We remark that definitions not included here can be found in [2] or [3].

Let D be a digraph, and let u be a node in L!(D). Then the 0-history of u,
BO(u), is simply (u); and for j > 1 the j-history of u, B?(u), is a sequence of nodes
(zo, 21, ..,x;) of L' such that (zoz1,T129,...,2j_12;) is the j—1-history of w.

Clearly, the sequence xg,z1,...,7; determines a trail in Li=3(D), and there is
one-to-one correspondence between the j-histories (i.e., the trails of length j in
L=3(D)) and the nodes in L*(D). The j-history B’(u) will be abbreviated to
a history B(u) if ¢ = j. Note that the history allows us to represent a node of
L{(D) in D. The following lemma enables us to count distances in L*(D) using the
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distances in D.

Lemma 2.1. Let zo,x1,...,2Zn be a shortest trail in D (if such exists) such that
(o, 21,--.,m5) = B(u) and (Tn—i,Tniy1,---,%n) = B(v). Then dipy(u,v) =
n — 1. Moreover, dri(p) (u,v) = oo if there is no required trail in D.

Proof. Let a and b be two adjacent nodes in L*(D), B(a) = (ao,---,a;) and
B(b) = (bo,-...,b;). Moreover, let B'(a) = (z,y) and B'(b) = (w,z). Then a
and b are adjacent in L*(D) if and only if y = w. Thus a; = bj_1, 1 < j < 4,
and ag, a1, ..., a;, b; determines a trail in D. This implies d:py(u,v) = n —i as
o, T1,---, Ty 1S a shortest trail in D satisfying the assumptions of lemma.
Clearly, if there is no required trail in L*(D) then dri(py(u,v) = co. [

We remark that in Lemma 2.1 the subtrail z;,z;11,...,2,—; is a path and
dp(xi,a:n_i) =n— 2.

3. RADII IN ITERATED LINE DIGRAPHS

First we introduce results concerning the out-radius of iterated line digraphs.

Lemma 3.1. Let D be a digraph with out-radius t < oo and let u be a node
in the out-center of D such that idp(u) = 0. If L{(D) is not empty then either
t—i < rT(L*(D)) <t or r*(LY(D)) = occ.

Proof. Suppose that r¥(L!(D)) < co. Since L*(D) is not empty, there is a node
in L!(D) such that B(z) = (u,z1,...,%;). Now idp(u) = 0 implies that z is the
unique node in the out-center of Li(D).

Let z be a node in L(D), B(z) = (2o, - .-, %), and let u,yy,. .., yn be a shortest
trail in D such that y,_;4; = 2;, 0 < 7 < 4. Then y; = z;, 1 < j < 4, as
rt(LY(D)) = e"L'D(D)(a:) < oo. By Lemma 2.1, dpipy(z,2) = drip)(u, 20), and
hence r*(L{(D)) < t.

Let v be a node in D with dp(u,v) = t. Suppose that ¢ > 4. Then there is a
node z in L*(D) with B(z) = (zo,. .., 2i—1,v). Now dri(p)(z,z) = dp(u, z0) > t—i,
and hence r*(L*(D)) > t—i. O

By Lemma 3.1 if a digraph D with out-radius ¢ < oo contains no cycle and Li(D)
is not empty, then either t—i < r*(L*(D)) <t or r*(L*(D)) = oc.

Lemma 3.2. Let D be a digraph with out-radius t < 00 and let u be a node in the
out-center of D such that idp(u) > 1. Then t < rT(L*(D)) < t+i.

Proof. As idp(u) > 1, there is a node v in D with vu € E(D). Since r*(D) < oo,
we have dp(u,v) < oo, and thus u lies in a cycle in D. Hence there is a node x
in L¥(D) with B(z) = (wo,...,%i_1,u). Since ef(u) = t, we have r*(L}(D)) <
ezri(D)(x) <e}(u) +i=1t+1, by Lemma 2.1.

Let z be a node in the out-center of L*(D), B(z) = (zo,--.,2;), and let w be
a node in D such that dp(z;, w) = ef(z). Clearly, there is a node, say y, in
Li(D) such that B(y) = (yo, ..., yi—1,w) for some v, ...,y;_1. Now r*(L{(D)) >
dri(py(2,y) > dp(z,w) =t. O
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Theorem 3.3. Let D be a digraph no two of whose cycles are joined by a path,
and assume that D contains at least one cycle. Then there are numbers k and
such that for every i > k either r*(L*(D)) =t or r*(L*(D)) = oo.

Proof. Since D contains cycles, no two of which are joined by a path, there are
numbers jp and ip such that L*(D) is isomorphic to L**72 (D) for every i > ip
(see e.g. [2, Theorem 10.9.1]). Suppose that there is k > ip such that r*(L¥(D)) =
t < oo. Distinguish two cases:
(i) There is a node v in L¥(D) with idze(py(u) = 0. Then u is in the out-center
of L¥(D). By Lemma 3.1 either r+(L***(D)) = oo or t = r+(L*tip(D)) <
rH(LFH(D)) < rH(L*(D)) =t for all i, 0 < i < jp.
(ii) idpe(py(u) > 1 for every node u in L¥(D). By Lemma 3.2 we have ¢t =
rH(L*(D)) < r T (LF4(D)) < r T (LF+tip (D)) =t for all i, 0 < i < jp.

Thus, 7+ (LY(D)) =t or rT(L*(D)) = oo for every i > k, as required. [

Now we prove the main result concerning the out-radius:

Theorem 3.4. Let D be a digraph containing two cycles jo?ned by a path (possibly
of length 0). Then either there are k and t such that r+(L(D)) =i+t for every
i > k; or there is k such that r*(L*(D)) = oo for every i > k.

Proof. Let Cy = (a1,as9,...,a;,,a1) and Cy = (by,be,...,b;,,b1) be two cycles in
D joined by a path. Suppose that there is 5 > 0 such that r¥(L7(D)) < oo.
Distinguish two cases:

(i) There is a node u in L7 (D) with idzipy(u) = 0. Then B(u) = (ug,u1, ..., u;)
and idp(up) = 0. Since r*(L¥(D)) = e}, (D) (u) < oo, there are paths P, and P,
from wu; to C7 and Cs, respectively. For k = 1,2 denote by By the trail starting
at ug, traversing B(u), Pg, and then continuing once around the cycle C. Clearly,
both B; and B, can be completed to i-histories, say B*(z*) and B*(y'), for ev-
ery sufficiently large 7. As idL'i(D)(.'L'i) = idpi(p) (v*) = 0 and 2* # y*, we have
rt(LY(D)) = oo.

(i) idri(py(u) > 1 for every node u in L7 (D). Then rt(L/(D)) < rt(L{(D))
r+(L7(D))+i—j for every i > j, by Lemma 3.2. Let x and y be nodes in L*(D), i
j, such that B(z)=(ay,as,...,a;,,a1,as,...) and B(y)=(b1,ba,...,by,,b1,ba,...).
The cycles C; and Cs may have some common paths. Let [ be the maximum
length of a path common to C; and C3. Let z be a node in the out-center of
LY(D) and B(z) = (20,---,%). Suppose that dzip)(z,2) < i — . By Lemma 2.1
Zi1-1,%i—1,---,% lies on Cq, and hence dp:py(z,y) > ¢ — 1. Thus, i —1 <
rt(LY(D)) < r+(L¥(D)) +i — j for every i > j.

By Lemma 3.2 r+(L**Y(D)) < r*(LYD)) + 1 for every i > j, so that
rH(L*1(D)) = rT(LY(D)) + 1 with finitely many (at most r* (LY (D)) — j + 1)
exceptions. Hence, there are numbers k and ¢ such that r+(L*(D)) = i+t for every
1 > k, as required. [

<
>

From now on we consider the radius (as opposed to the out-radius) of iterated
line digraphs. Since r(D) < oo if and only if D is strongly connected, we consider
only nontrivial strongly connected digraphs.

Lemma 3.5. For each nontrivial strongly connected digraph D we have r(L(D)) >
r(D).
Proof. Let = be a node in L(D) with B(z) = (u,v). We show that ey p)(z) >
ep(u).
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Let z be a node in D for which e (u) = dp(z,u), and let y be a node in L(D)
such that B(y) = (z,w) for some w. By Lemma 2.1 dr(p)(y,z) > dp(z,u), and

hence ey, ) () > ep(u).

Analogously, if 2 satisfies e}, (u) = dp(u, 2’) choose y' from V (L(D)) such that
B(y') = (#,w’). Then ej{(D)(a:) > drpy(z,y) > dp(u,2') = ef(u).

Thus, erp)(r) > ep(u) for each node z in L(D), B(x) = (u,v), and hence
r(L(D)) > r(D). O

Theorem 3.6. Let D be a nontrivial strongly connected digraph different from a
cycle. Then there are t and t', such that i+t < r(L*(D)) < i+t' for every i > 0.

Proof. Clearly, D contains two cycles joined by a path (possibly of length 0). More-
over, the digraph L*(D) is not empty and r(L*(D)) < oo for every i > 0. By
Theorem 3.4. there are k¥’ and t' such that r+(L*(D)) =i+t for every i > &/, and
hence there is ¢ < # such that i +t < r(L¢(D)) for every i > 0.

Let u be a central node in D, and let C be a shortest cycle in D containing u, C' =
(u,as, . ..,a;,u). Then there is a node z in L!(D) such that B(z) = (u, az, ..., a;,u).
We have r(L'(D)) < eri(p)(z) < ep(u)+1 = r(D)+1, by Lemma 2.1. Analogously,
if 7 > 1 then r(L7(D)) < j-1+ (D) (take a trail going j times around C for
B(z)). By Lemma 3.5 we have r(L*(D)) < r(LUTDY(D)) < (j+1)l +r(D) for all 4,
jl < i < (j+1)I, and hence r(L*(D)) < i+r(D)+l for every i > 0. O

4. CENTERS IN ITERATED LINE DIGRAPHS

First we introduce results concerning the out-centers. In what follows, by H O D
we mean that D is a subgraph of H, and if D and H are isomorphic we write D = H.

Theorem 4.1. Let D be a nontm'm'.al strongly connected digraph. Then there is a
digraph H, H D D, such that C*(L'(H)) = L*(D) for every i > 0.

Proof. Let d = max{2,d(D)}, where d(D) denotes the diameter of D. As D is
strongly connected, we have d < co. Let V(H) = V(D) U {a,b1,...,aq,bq} and
E(H) = E(D) U{uai,uby : v € V(D)} U{ajajt1,bbj4+1 : 1 < j < d-1} U
{agag_1,babg_1} (see Figure 1). Let i > 0. We show that C*(L!(H)) = L¢(D).
Let u be a node in Li(D). For every node z in D, it holds that ejf;(z) =
dg(x,aq) = d. Since there is a node v in L*(H) with B(v) = (a4, @4_1, ad, - - - ), We

have eZLi(H) (u) = d + i, by Lemma 2.1.

Let u be a node from V(L*(H)) — V(L{(D)) with B(u) = (x0,.-.,2;).- Then
either dg(z;,aq) = 00 or dg(x;,bg) = 0o as x; is not in D. [

A digraph D is antisymmetric if and only if uv ¢ E(D) for every vu € E(D).
We remark that if D is an antisymmetric strongly connected digraph, then there
is an antisymmetric digraph H, H O D, such that CT(L*(H)) = L*(D) for every
i > 0. (Just replace the two-cycles at ag—; and bg_; by three-cycles.) In contrast
with Theorem 4.1, if D is not strongly connected we cannot guarantee existence of
H for which C*(L¢(H)) = L¥(D), even if i = 1.



6 MARTIN KNOR AND LUDOVIT NIEPEL

Figure 1

Theorem 4.2. Let D be a digraph that is not strongly connected, with C* (D) # D
and idp(u) > 2 for every node u in D. Then there is no digraph H for which
CH(L(H)) = D.

Proof. Suppose that H satisfies CT(L(H)) & D. Let F = C*(L(H)), and let
t = rT(L(H)). Clearly, ezr(H) (u) =t < oo for every node u in F. As D is not
strongly connected, there are nodes z and y in F such that dp(z,y) = oo while
drcmy(w,y) < t. Denote by P a path from = to y in L(H). Let w be the last node
on P that is not in F' and let v be a successor of w in P. Since idp(v) > 2, there
are nodes vy and v in F such that v1v,v9v € E(F). Then ej.:(H) (v;)) =1t,1=1,2,
and 62(}[) (w) > t.

It is well-known that if x1y1, 1y, and 29y, are arcs in a line digraph, then so
is xa2y2 (see e.g. [2, Theorem 10.8.4]). Thus, wu is an arc in L(H) if and only if
so are vyu, 1 = 1,2. Now if u is from V(L(H)) — {v1, w} we have dr g (w,u) =
dr,m)(v1,u), while dp gy (w,v1) = dpy(v2, v1) < t. Hence eZ(H)(w) <'t, a contra-
diction. [

Let D; be a digraph on n > 5 nodes, say ui,us,...,u,, and let E(D;) =
{uiuir1, wiuire : 1 < i < n} (the addition is modulo n). Let D) be isomorphic to
and distinct from Dy, and let D consist of D,, D/, and all arcs joining the nodes
of D; to nodes in D}. Then L(D) satisfies the assumptions of Theorem 4.2, and
hence there is an infinite number of antisymmetric digraphs D such that L(D) 2
C*(L(H)) for every digraph H.

From now on we consider the centers (instead of the out-centers) in iterated
line digraphs. Here, the situation is different since each i-iterated line digraph is
admissible as a center of i-iterated line digraph, ¢ > 0.

Theorem 4.3. Let D be a digraph and let 5 > 0. If L7(D) is not empty then there
is a digraph H, H O D, such that C(L*(H)) = L*(D) for every i < j.

Proof. Let k = {%] Add to D 2(k+1) new nodes a1, as, - .., ags1,b1,b2, ..., bgi1,
and 4k arcs a;a;4+1,a;+1ai,b;b;+1,b;410;, 1 < 7 < k. Moreover, subdivide each of
the added arcs not incident with agy1 or bgyi (see Figure 2 for the case k = 2).
Finally, join every node u of D to a; and b; by paths of length k£, and join a; and
by to every node u in D by another pair of paths of length k. Do this so that
all 4|V (D)| paths are pairwise internally node disjoint (that is, we have appended
4(k—1)|V(D)| new vertices).

Denote by H the resulting digraph. Then ef;(z) = eg(x) = 3k—1 for every
node x of D (although D can be disconnected), and both e};(z) and ey (z) are
greater than 3k—1 for every node z from V(H) — V(D). Let i < j. We show
C(L*(H)) = L*(D).
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Let u be a node in L{(D). As egy(x) = 3k—1 for every node = of D, we have
eri(m)(v) < 3k—1+4, by Lemma 2.1. Let v be a node in L*(H), for which B(v) =
(---sak41, 0k, ary1). Then dpigy(v,u) = 3k—1+4, and hence er:(z)(u) = 3k—1+4.

Let u be a node from V (L*(H))-V (L*(D)), B(u) = (xo, x1,-..,2;). Since i < 2k
either o or z; is not in D. Suppose that zo ¢ V(D). Let v and z be nodes in L*(H)
such that B(v) = (..., ak,ax+1) and B(z) = (..., bk, bg4+1). Then, by Lemma 2.1,
drimy(v,w) > 3k+i or dricpy(z,u) > 3k+i, and hence €L (u) > 3k+i. Analo-
gously, efi(H) (u) > 3k+i if z; ¢ V(D), and hence ep: gy (u) > 3k+i. O

. B

as

N/

Figure 2

We remark that if D is an antisymmetric digraph and L7 (D) is not empty, then
there is an antisymmetric digraph H, H D D, such that C(L‘(H)) = L*(D) for
every i < j. (Just choose k = max{2, (%1} and replace the two-cycles at agyq
and b1y by three-cycles.) Theorem 4.3 is best possible in a sense, as shown by
Corollary 4.5 and Corollary 4.6 for digraphs and antisymmetric digraphs, respec-
tively.

Theorem 4.4. Let D be a digraph with nonempty arc set, each arc of which is
contained in a cycle of length at most I. Then there is no H, H D D, such that
r(L(H)) > 1 and C(L*(D)) = L*(D) for every i > 0.

Proof. Suppose that there is H D D satisfying the assumptions of theorem. Since
H D D, we have E(H) D E(D) and r(L(H)) =t < oc.

Write H' = L(H) and D' = L(D). Then V(H') — V(D') # () and H' is strongly
connected. Thus, there is a cycle, say Cp, in H' passing through a node, say
x, of D' such that C; ¢ D’. Let Cy be a cycle of length I3 < [ in D’ passing
through the node z (i.e., the arc z of D). Denote by l; the length of Cy. There are
a € V(Lhz(H") -V (LY (D')) and b € V(L1 (D)) such that V(B(a)) = V(C),
V(B(b)) = V(Cy), and z is the initial and terminal node of both B(a) and B(b).
(The B(a) circles I3 times around Cy and B(b) circles [y times around Cs.) In what
follows we show that 6L1112(H:)(CL) < 6L1112(H/)(b).

We have eg () = r(H') = t. Suppose that eg: (z) = e} (z) (the case eg(z) =
ep () can be proved similarly). Then there is a node y in H' such that dg (z,y) =
t. Since H' is strongly connected, there is a node u in L2 (H') with B(u) = (y, .. .).
Ast > 1> Iy, yisnot in Cy, and hence epi iz g1y (b) > dpiis gy (b, w) =t +11l2, by
Lemma 2.1.

Now let v be a node in Lh'2(H') with B(v) = (vo,...,v1,1,)- Then
szlz2(H,)(a,U) < dg(x,v0) + l1ls <t +lil2 and szlz2(H,)(v,a) < dg(v,1,, ) +
l1ly < t+1ql9, and hence eLzllz(H,)(a) <r+hil < eLzle(H,)(b), a contradiction. [
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Corollary 4.5. Let D be a digraph each arc of which lies in a two-cycle and assume
that C(D) # D. Then there is no H, H O D, such that C(L*(H)) = L*(D) for
every i > 0.

Proof. Suppose that H satisfies C(L*(H)) = L*(D) for every i > 0. Let e = ujus
be an arc in D. Then also f = ugu; € E(D), and since C(D) # D there is another
arc, say g = v1v2, in D. Now v; # uz or vy # wuy, and hence dpg)(e,g) > 2 or
drcmy(f,9) > 2, respectively. Thus r(L(H)) > 2, contradicting Theorem 4.4. [

Corollary 4.6. Let D be an antisymmetric digraph each arc of which lies in a
triangle and assume th.at C(D) 75 D. Then there is no antisymmetric digraph H,
H D D, such that C(L*(H)) = L*(D) for everyi > 0.

Proof. Suppose that H satisfies C(L{(H)) = L*(D) for every i > 0. Let e = uv be
an arc in D and let T be a triangle in D containing e. Since C(T') = T, there is an
arc f in D such that f ¢ E(T). As D is strongly connected, we may assume that
f =wuz, z# v. Since H is antisymmetric, dg(v,u) > 2, and hence d g (e, f) > 3.
Thus r(L(H)) > 3, which contradicts Theorem 4.4. [
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