CHARACTERIZATION OF MINOR-CLOSED PSEUDOSURFACES

MARTIN KNOR

Department of Mathematics, Faculty of Civil Engineering, Slovak Technical University, Radlinského 11, 813 68 Bratislava, Slovakia

ABSTRACT. A pseudosurface is obtained from a collection of closed surfaces by identifying some points. It is shown that a pseudosurface S is minor-closed if and only if S consists of a pseudosurface S°, having at most one singular point, and some spheres glued to S° in a tree structure.

This is a preprint of an article accepted for publication in Ars Combinatoria ©1996 (copyright owner as specified in the journal).

1. Introduction

By a pseudosurface we understand a connected topological space resulting when finitely many identifications, of finitely many points each, are made on a finite collection of closed surfaces (=compact 2-manifolds). Any point obtained by such an identification of at least two distinct points is called a singular point. Let G be a graph and S a surface or a pseudosurface. We say that G is embeddable in S if there is a continuous mapping $\varphi: G \to S$ which maps G homeomorphically onto its image $\varphi(G)$. An embedding $\varphi: G \to S$ is called a 2-cell (or cellular) embedding if each component of $S - \varphi(G)$, called a face, is homeomorphic to an open 2-cell.

Embeddability in a closed surface can be characterized by a finite set of forbidden subgraphs; constructive proofs of this theorem were given by Kuratowski for the sphere [4], Bodendiek and Wagner for orientable surfaces [3], and by Archdeacon and Huneke for nonorientable surfaces [1]. It is natural to ask whether the same is true for pseudosurfaces. The answer is negative in general, as shown by Širáň and Gvozdjak in [7] for 2-banana surface, i.e. the 2-amalgamation of two spheres. However, the 2-banana

surface is not minor-closed, see [2]. We remark that a surface S is minor-closed if and only if the set of graphs embeddable in S is minor closed (i.e. closed under a deletion of an edge or a vertex, and under contraction of an edge).

As shown by Robertson and Seymour in [6], any minor-closed class of graphs can be characterized by a finite set of forbidden subgraphs. Thus, it seems to be reasonable to characterize minor-closed pseudosurfaces; by [6] the embeddability in such pseudosurfaces can be characterized by a finite set of forbidden subgraphs.

Let S be a pseudosurface. If S contains as a topological subspace a sphere S_1 having exactly one singular point, then S is called *spherically-reducible*. Otherwise, S is called *spherically-irreducible*. Clearly, from each pseudosurface S we obtain a spherically-irreducible pseudosurface S° by successively deleting the spheres that are "glued" to the rest of the pseudosurface in exactly one singular point. Moreover, S° is determined uniquely by S. The main result of this paper is the following theorem:

Theorem 1. Let S be a pseudosurface. Let S° be the spherically-irreducible pseudosurface that arises from S by successively deleting the spheres containing exactly one singular point. Then S is minor-closed if and only if S° contains at most one singular point.

2. Preliminaries

Let G be a graph. As usual, V(G) denotes the vertex set of G and E(G) the edge set of G. The degree of a vertex u in G is denoted by $deg_G(u)$. By G/uv we denote a graph that arises from G by contracting the edge $uv \in E(G)$. A cycle on n vertices is denoted by C_n and a path on n vertices is denoted by P_n .

Let S be a closed surface and let G be a graph cellularly embedded in S with F faces. Then the number

$$\chi(S) = |V(G)| - |E(G)| + F$$

depends only on S (and not on G) and is known as the Euler characteristic of S. The non-negative quantity $\epsilon(S) = 2 - \chi(S)$ is called the Euler genus of S. If S is orientable, then S has a positive orientability characteristic. Otherwise, S has a negative orientability characteristic. We remark that S is determined uniquely by $\epsilon(S)$ and the orientability characteristic.

Definitions and notations not included here can be found in White [8]. In what follows we introduce concepts of uniqueness and faithfulness due to [5].

Two embeddings $\varphi_1, \varphi_2 : G \to S$ are said to be *equivalent* if there is an automorphism $\sigma : G \to G$ and a self-homeomorphism $h : S \to S$ with $h \circ \varphi_1 = \varphi_2 \circ \sigma$. When there is just one equivalence class of embeddings of G in S, G is said to be *uniquely embeddable* in S.

Faithfulness is defined as follows. Let $\varphi:G\to S$ be an embedding of G in S. Then φ is said to be faithful if for any automorphism $\sigma:G\to G$, there is a self-homeomorphism $h:S\to S$ such that $h\circ\varphi=\varphi\circ\sigma$. In other words, φ is faithful when all automorphisms of $\varphi(G)$ extend to self-homeomorphisms of S. A graph G is said to be faithfully embeddable in S if G has a faithful embedding in S.

Thus, G is uniquely and faithfully embeddable in S if G has a unique embedding in S and this embedding is faithful.

For an arbitrary closed surface S there exists a graph uniquely and faithfully embeddable in S by the following lemma [5, Proposition 1.4.7]:

Lemma 1. Every closed surface admits an infinite number of triangulations that are uniquely and faithfully embeddable in it.

Let G be uniquely and faithfully embeddable in S. Then G is uniquely embeddable in S as a labeled graph. Consider a faithful embedding of G in S. Then no automorphism of G can map a vertex u of G again to u and rearrange the neighbors of u. This local property of faithful embedding will often be tacitly used.

Let G be uniquely and faithfully embeddable in S, and let H be a subdivision of G. Then obviously, H is again uniquely and faithfully embeddable in S. Moreover, we have the following lemma [5, Corollary 1.5.7]:

LEMMA 2. Let G have a unique and faithful triangular embedding in a closed surface S. If a 3-connected graph H is embeddable in S and contains a subgraph contractible to G, then H is uniquely and faithfully embeddable in S.

In the proof of Theorem 1 we use the following lemma:

Lemma 3. Every closed surface S admits infinitely many triangulations that are uniquely and faithfully embeddable in S, and that cannot be embedded in S' with $\epsilon(S') = \epsilon(S)$ and the opposite orientability characteristic.

Proof. Let G be uniquely and faithfully triangularly embeddable in S. In what follows we construct the barycentric subdivision G_2 of G and show that G_2 satisfies the conditions in Lemma 3. First subdivide all edges of G by one vertex and denote the resulting graph by G_1 . Clearly, G_1 has a 2-cell embedding, say φ_1 , in S. Now insert one new vertex into each face f of φ_1 , join it to all vertices lying on the boundary of f, and denote the resulting graph by G_2 .

Since G triangulates S and contains no loops, there are no multiple edges in G_2 . Since G_2 is 3-connected and contains a subgraph contractible to G, G_2 is uniquely and faithfully embeddable in S, by Lemma 2. Moreover, the unique embedding of G_2 in S is a triangulation of S.

Now assume that G_2 is embedded in S' with $\epsilon(S') = \epsilon(S)$. Then G_2 necessarily triangulates S'. Clearly, each 3-cycle in G_2 contains exactly one vertex from V(G), one vertex from $V(G_1)-V(G)$, and one vertex from $V(G_2)-V(G_1)$. Moreover, each edge of G_2 lies in exactly two 3-cycles. Thus, the surface admitting a triangular embedding of G_2 is determined uniquely, and hence $S \cong S'$.

By Lemma 1 there are infinitely many triangulations of S satisfying Lemma 3. $\ \square$

As a matter of fact, the graphs satisfying Lemma 1 were constructed from triangulations by means of barycentric subdivision, see [5]. Hence, they also satisfy Lemma 3.

3. Proof of the main result

This section is completely devoted to the proof of Theorem 1.

Proof. Let S be a pseudosurface, and let S° be the spherically-irreducible pseudosurface that arises from S by successively deleting the spheres containing exactly one singular point. Suppose that S° contains at most one singular point.

Clearly, each pseudosurface is closed under deletion of an edge or a vertex. Thus, it is sufficient to prove that S is closed under edge contraction.

Let G be a graph embeddable in S, and let φ be an embedding of G in S. Then the subgraph of G embedded in $S - S^{\circ}$ in φ is planar. Thus, G is embeddable in S° . Clearly, S° is closed under edge contraction, and hence, S is minor-closed.

We now turn to the more difficult part of Theorem 1. The outline of the proof is as follows. Suppose that S is a pseudosurface closed under edge contraction. We construct a graph G embeddable in S with two specified vertices z_1 and z_2 that are joined by an edge. Then we derive properties (i) - (iv) of any embedding φ^c of G/z_1z_2 in S. Finally, considering various positions of z_1 and z_2 in G on S, and using (i) - (iv) we obtain assertions (1) - (4) that complete the proof.

Let S be a pseudosurface resulting when identifications are made on a collection S_1, S_2, \ldots, S_l of closed surfaces. For the sake of convenience, with S we associate a bipartite multigraph B_S . The vertex set of B_S consists of S_i , $1 \le i \le l$, and the set P of singular points of S, and S_i is joined

to $p \in P$ by t edges if and only if t points of S_i have been identified to p. Denote n = |P|, and $n_i = deg_{B_S}(S_i)$, $1 \le i \le l$.

Let p be a singular point of S. If there is S_i , $1 \leq i \leq l$, that is joined to p by at least two edges in B_S , then p is called a self-singular point. By S_i^* we denote the topological subspace of S, which had been obtained from S_i , $1 \leq i \leq l$. More precisely, $B_{S_i^*}$ is a subgraph of B_S induced by multiple edges incident with S_i .

The construction of G

By Lemma 3 there are graphs H_i uniquely and faithfully triangularly embeddable in S_i , $1 \le i \le l$, which cannot be embedded in S_i' with $\epsilon(S_i') = \epsilon(S_i)$ and the opposite orientability characteristic. We can assume that each H_i has at least n_i vertices.

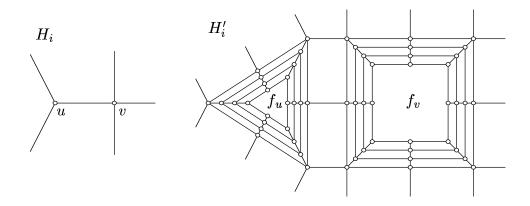


Figure 1

Now we locally describe a construction of a graph H'_i from H_i , $1 \leq i \leq l$. We replace each vertex u of H_i by the Cartesian product $C_{n \cdot deg_{H_i}(u)} \times P_{n+2}$ and each edge by n+1 independent edges as shown in Fig. 1 for n=2. Clearly, H'_i is 3-connected, embeddable in S_i , and contains a subgraph contractible to H_i . Thus, by Lemma 2 H'_i is uniquely and faithfully embeddable in S_i , and the only embedding φ'_i of H'_i in S_i is just the one locally described above.

For every $u \in V(H_i)$ denote by f_u the face of the embedding φ_i' that appears in the position of u in S_i , $1 \le i \le l$ (see Fig. 1). For a moment we concentrate on H_1 . Put one new vertex u' into each face f_u of φ_1' , and join u' to all vertices incident with f_u . There are at least n_1 such added vertices u'; out of them we need to distinguish n_1-1 vertices, say $v_2^1, \ldots, v_{n_1}^1$. Moreover, put one new vertex v_1^1 into the face where v_2^1 has been placed, join v_1^1 to v_2^1 , and denote the resulting graph by G_1 , see Fig. 2. Similarly, for each $i, 2 \le i \le l$, put one new vertex u' into each face f_u of

 φ_i' , join u' to all vertices incident with f_u , and denote the resulting graph by G_i . Denote by $v_1^i, \ldots, v_{n_i}^i$ the n_i vertices of $V(G_i) - V(H_i')$, $1 \le i \le l$.

Finally, identify $v_1^1, \ldots, v_{n_1}^1, \ldots, v_1^l, \ldots, v_{n_l}^l$ into n vertices z_1, \ldots, z_n in the same way as the corresponding points of S_1, \ldots, S_l have been identified when constructing the pseudosurface S, and denote the resulting graph by G. More precisely, there is a one-to-one correspondence between the vertices v_j^i , $1 \leq i \leq l$ and $1 \leq j \leq n_i$, and the edges of B_S incident to S_i . Identify v_j^i with $v_{j'}^{i'}$ whenever the corresponding edges of B_S are incident to the same singular point. Note that the structure of G depends on the ordering of the surfaces S_1, \ldots, S_l and the singular points of S. However, the assertions (i) - (iv) we are going to prove below do not depend on this ordering.

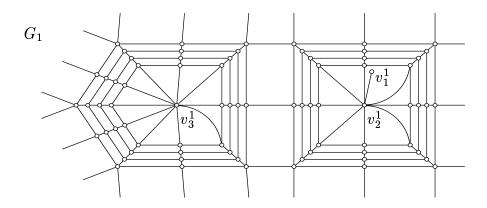


Figure 2

Clearly, G is embeddable in S. Denote by φ the embedding of G in S which is determined by the embeddings φ'_i , $1 \leq i \leq l$, as described above.

Denote by z_1 and z_2 the vertices of G obtained from v_1^1 and v_2^1 , respectively. Assume that $z_1 \neq z_2$. Suppose that G/z_1z_2 is embeddable in S and denote by φ^c an embedding of G/z_1z_2 in S. In what follows we derive some properties of φ^c . (We remark that so far we have not had any reason to expect that the supposed embedding φ^c of G/z_1z_2 in S has anything in common with the original embedding φ of G in the same S.)

Basic properties of φ^c

There are $m \leq n$ vertices, say x_1, x_2, \ldots, x_m , of G/z_1z_2 embedded in the singular points of S in φ^c . Let H' be a subgraph of G/z_1z_2 . If H' contains no vertex from $\{x_1, \ldots, x_m\}$, then H' is called an *unbroken* subgraph of G/z_1z_2 .

For each $i, 1 \leq i \leq l$, let us do the following. Find a connected subgraph H_i'' of $H_i' - \{x_1, \ldots, x_m\}$ that is uniquely and faithfully embeddable in S_i .

For each $u \in V(H_i)$, include to H_i'' all unbroken copies of $C_{n \cdot deg_{H_i}(u)}$ at u. (Since $m \leq n$, for each $u \in V(H_i)$ there are at least two copies of $C_{n \cdot deg_{H_i}(u)}$ in H_i'' .) Moreover, for each $uv \in E(H_i)$, include to H_i'' all those unbroken copies of P_{n+2} at u that correspond to the unbroken copies of P_{n+2} at v, together with the edges joining them. (Since $m \leq n$, for each edge $uv \in E(H_i)$ there is a pair of corresponding copies of P_{n+2} in H_i'' .) Finally, throw away the endvertices of H_i'' , see Fig. 3.

Clearly, H_i'' contains a subgraph contractible to H_i . Since H_i'' is a subgraph of H_i' , H_i'' is embeddable in S_i . Moreover, from H_i'' we obtain a 3-connected graph by a successive contraction of edges incident with vertices of degree two. Thus, H_i'' is uniquely and faithfully embeddable in S_i , by Lemma 2 and the note before Lemma 2.

Note that each H_i'' is embedded in one closed surface, say S_{i^c} , in φ^c , since the connected graph H_i'' contains no vertices placed in singular points. Clearly, $\epsilon(S_i) \leq \epsilon(S_{i^c})$, since H_i triangulates S_i and H_i'' contains a subgraph contractible to H_i . Let $J_t = \{j : \epsilon(S_j) > t\}$, $t \geq 0$. Assume that there is t such that $S_{j^c} \cong S_j$ for each $j \in J_t$ (this is certainly true for t large enough). Let $j \in J_t$. Then φ^c induces a cellular embedding of H_j'' in S_{j^c} . Thus, only planar graphs can be embedded in S_{j^c} together with H_j'' . By the finiteness of J_t , for each $j \in J_t$ there is $k \in J_t$ such that $S_{k^c} = S_j$ (since $t \geq 0$, H_k'' is not a planar graph).

Suppose that $\epsilon(S_i) = t$. If S_i is not a sphere, then H_i'' is not a planar graph, and hence $i^c \notin J_t$. Thus, $\epsilon(S_{i^c}) \leq \epsilon(S_i)$ and hence $\epsilon(S_{i^c}) = \epsilon(S_i)$. Moreover, since H_i is not embeddable in S' with $\epsilon(S') = \epsilon(S_i)$ and the opposite orientability characteristic, we have $S_{i^c} \cong S_i$. Hence, $S_{j^c} \cong S_j$ for each $j \in J_{t-1}$. Thus:

(i) For each $i, 1 \leq i \leq l$, φ^c induces an embedding of H_i'' in S_{i^c} , $1 \leq i^c \leq l$. If S_i is not a sphere, we have $S_{i^c} \cong S_i$. Moreover, if $i_1 \neq i_2$, and S_{i_1} and S_{i_2} are not spheres, then $S_{i_1^c} \neq S_{i_2^c}$.

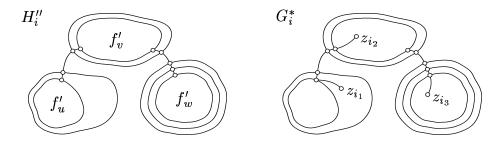


Figure 3

Clearly, each vertex from $V(G_i)-V(H'_i)$ (except v_1^1) is joined to H''_i by

at least n+1 vertex-disjoint paths in G_i . Since v_1^1 and v_2^1 are identified into a single vertex in G/z_1z_2 , we have:

(ii) All vertices of G/z_1z_2 that have been obtained by the identification of some vertices from $V(G_i)-V(H_i')$, and possibly some other vertices, lie in $S_{i^c}^*$ in φ^c , $1 \leq i \leq l$.

Suppose that S_i is a sphere, but S_{i^c} is not. Then there is a j such that S_j is not a sphere and $S_{j^c} = S_{i^c}$, by (i) (the second part). Moreover, φ^c induces a cellular embedding of H''_j in S_{i^c} , and hence, H''_i is embedded in one cell of the embedding of H''_j in S_{i^c} . Thus, φ^c induces an embedding of H''_i in S_{i^c} that arises from the embedding of H_i in S_i , since H''_i is uniquely and faithfully embeddable in the sphere (we do not distinguish the exterior face of the embedding of H''_i in the cell). Analogously, if S_i is not a sphere, or if S_{i^c} is a sphere, then φ^c induces an embedding of H''_i in S_{i^c} that arises from the embedding of H_i in S_i , by (i).

Let $V_i = \{v_1^i, \ldots, v_{n_i}^i\} - \{v_1^1\}$. Denote by f'_u the face of the embedding of H''_i in S_{i^c} that corresponds to the face f_u in φ'_i , see Fig. 3. Since $m \leq n$, for all pairs $u, v \in V(H_i)$ there are at least four vertex-disjoint cycles in the embedding of H''_i in S_{i^c} that separate f'_u from f'_v , namely the copies of $C_{n \cdot deg_{H_i}(u)}$ and $C_{n \cdot deg_{H_i}(v)}$. Suppose that $u, v \in V_i$ have been identified to z in G/z_1z_2 . Since there are at least two vertex-disjoint cycles separating u from v in S_{i^c} in φ^c (the exterior ones, see Fig. 3), z is placed in a self-singular point of $S_{i^c}^*$ in φ^c . Analogously, we have:

(iii) Let $v_1, \ldots, v_a \in V_i$ be identified to a vertex z in G/z_1z_2 , $a \geq 2$. Then z is placed in φ^c in a self-singular point p of $S_{i^c}^*$ that is joined to S_{i^c} by at least a edges in B_S .

Now we introduce a lexicographical ordering of pseudosurfaces $S_{i'}^*$ for which $S_{i'}\cong S_i$, according the multiplicities of edges in $B_{S_{i'}^*}$. Let $S_{i_1}\cong S_{i_2}$. Let $S_{i_k}^*$ contain b_k self-singular points with multiplicities (i.e. the multiplicities of edges in $B_{S_{i_k}^*}$) $a_1^k \geq \cdots \geq a_{b_k}^k$, $1 \leq k \leq 2$. We write $S_{i_1}^* \leq S_{i_2}^*$ if and only if from $a_j^1 > a_j^2$, $1 \leq j \leq b_1$ it follows that there is j', $1 \leq j' < j$, with $a_{j'}^1 < a_{j'}^2$. If $S_{i_1}^* \leq S_{i_2}^*$ and $S_{i_1}^* \not\cong S_{i_2}^*$, we write $S_{i_1}^* \prec S_{i_2}^*$.

Let z be a vertex of G/z_1z_2 that has been obtained by the identification of a vertex from V_i , and possibly some other vertices. Denote by P_z the collection of the paths joining z to H''_i that contain no vertex from $\{x_1,\ldots,x_m\}$ (except possibly z). Clearly, for each such z there is at least one path in P_z with this property. Denote by G_i^* the subgraph of G/z_1z_2 induced by H''_i and the paths P_z , where z is obtained by the identification of a vertex from V_i , see Fig. 3 (the vertices z_{i_j} in Fig. 3, $1 \leq j \leq 3$, need not necessarily be distinct). Since H''_i is embedded in S_{i^c} in φ^c , the graph G_i^* is embedded in S_{i^c} , by (ii).

Suppose that S_i is not a sphere. Then $S_{i^c} \cong S_i$, by (i). Moreover,

we have $S_{i^c}^* \succeq S_i^*$, by (ii) and (iii). Note that $S_{1^c}^* \succeq S_1^*$ also if z_1 and z_2 are self-singular points of S_1^* . (We remark that $S_{i^c}^* \succeq S_i^*$ is only a necessary but not a sufficient condition for embeddability of G_i^* in $S_{i^c}^*$). Let $J = \{j : S_j^* \succ S_i^*\}$. By (i) (the second part), if $k_1 \neq k_2$, and $k_1, k_2 \in J$, then $S_{k_1^c} \neq S_{k_2^c}$. Since J is a finite set, $S_{i^c}^* \succ S_i^*$ contradicts $S_{j^c}^* \succeq S_j^*$, $j \in J$. Hence, $S_{i^c}^* \cong S_i^*$.

Now suppose that S_i is a sphere, but S_i^* is not. Moreover, suppose that S_{i^c} is not a sphere, either. Then there is a j such that S_j is not a sphere and φ^c induces an embedding of G_j^* in $S_{j^c}^*$ with $S_{j^c}^* = S_{i^c}^*$, by (i) (the second part). As shown above, we have $S_j^* \cong S_{j^c}^*$. Since S_i^* is not a sphere, there is a self-singular point in S_i^* . Since $z_1 \neq z_2$ in G, there are at least two vertices, say $u, v \in V_i$ that have been identified into a single vertex in G_i^* . However, φ^c induces an embedding of H_i'' in S_{i^c} that arises from the embedding of H_i in S_i (see the note below (ii)). Thus, at least one of the vertices u and v, say u, is separated from each vertex from V_j (and also from V_i-u) by a cycle in S_{i^c} in φ^c . Since G_j^* is embedded in $S_{i^c}^*$ in φ^c , we have $S_{i^c}^* \succeq S_j^*$, as shown above. Since u is separated from each vertex from $V_j \cup (V_i-u)$ by a cycle in S_{i^c} in φ^c , we have $S_{i^c}^* \succeq S_j^*$, which contradicts $S_{i^c}^* \cong S_j^*$. Hence, if S_i^* is not a sphere but S_i is, then S_{i^c} is a sphere, too.

Now analogously as above, if S_i^* is not a sphere but S_i is, we have $S_{i^c}^* \succeq S_i^*$, by (ii) and (iii). Moreover, if $S_{i_k}^*$ is not a sphere but S_{i_k} is, $1 \le k \le 2$, we have $S_{i_1^c}^* \ne S_{i_2^c}^*$. Hence, we have $S_{i^c}^* \cong S_i^*$, since the set of those j for which $S_i^* \succ S_i^*$ is finite. Thus:

(iv) For each $i, 1 \leq i \leq l$, φ^c induces an embedding of G_i^* in $S_{i^c}^*$. If S_i^* is not a sphere, we have $S_{i^c}^* \cong S_i^*$. Moreover, if $i_1 \neq i_2$, and $S_{i_1}^*$ and $S_{i_2}^*$ are not spheres, then $S_{i_1^c}^* \neq S_{i_2^c}^*$.

Necessary conditions for S

To obtain the necessary conditions in Theorem 1, we now need to utilize the "finer structure" of G, that is, the way how G depends on the labelling of the surfaces and the singular points. In fact, we only need to consider the vertices z_1 and z_2 in G.

Suppose that z_1 and z_2 are placed in two self-singular points of S_1^* in φ . Let z_j be obtained by the identification of t_j vertices of G_1 , $1 \leq j \leq 2$. Suppose that G_1^* is embedded in S_{1c}^* in φ^c . Since $t_1+t_2-1 > \max\{t_1,t_2\}$, we have $S_{1c}^* \succ S_1^*$, by (i) and (iii). By (iv) we have:

(1) No pseudosurface S_i^* contains more than one self-singular point, 1 < i < l.

Suppose that B_S contains a cycle of length at least four. Let $p_1, S_1, p_2, \ldots, p_t, S_t, p_1$ be a shortest cycle in B_S such that $t \geq 2$. Let z_1 be placed in p_1 and z_2 be placed in p_2 in φ . Let \overline{G} be the subgraph of G/z_1z_2 induced by $G_2^*, G_3^*, \ldots, G_t^*$.

By (iv) each G_i^* , $2 \le i \le t$, is embedded in one pseudosurface $S_{i^c}^*$ in φ^c . Hence, \overline{G} is embedded in one pseudosurface, say S_k^* , in φ^c if t = 2. Now suppose that $t \ge 3$. Then G_2^*, \ldots, G_t^* are joined to a (t-1)-cycle, by (ii). (More precisely, if we replace each G_i^* by a single vertex g_i , and join g_i with g_j by an edge whenever G_i^* and G_j^* have some common vertices, then \overline{G} will result to a cycle on t-1 vertices.) Since 2t is the length of a shortest cycle of length at least four in B_S , the graph \overline{G} is embedded in one pseudosurface, say S_k^* , if $t \ge 3$.

Since \overline{G} is not a planar graph, S_k^* is not a sphere. By (iv) (the second part), at most one pseudosurface from S_2^*, \ldots, S_t^* is not a sphere. If $S_k^* \not\cong S_i^*$ for each $i, 2 \leq i \leq t$, then the finiteness of the set of those j for which $S_j^* \cong S_k^*$ contradicts (iv). Hence, $S_k^* \cong S_j^*$ for some $j, 2 \leq j \leq t$, and S_j^* is the unique pseudosurface from S_2^*, \ldots, S_t^* which is not a sphere.

Suppose that t=2. Then $\overline{G}=G_j^*=G_2^*$ and the vertex z_1z_2 is embedded in a self-singular point of S_k^* in φ^c . Hence we have $S_k^* \succ S_2^*$, by (iii), which contradicts $S_k^* \cong S_2^*$.

Now suppose that $t \geq 3$. Let \overline{G}' be the subgraph of \overline{G} induced by G_i^* , $2 \leq i \leq t$ and $i \neq j$. Then \overline{G}' is a connected graph containing two distinct vertices, say z^1 and z^2 , of G_j^* . Let z^i be obtained by the identification of a set V_j^i vertices from V_j , and possibly some vertices outside V_j , $1 \leq i \leq 2$. Since $S_k \cong S_j$, the graph H_j'' is uniquely and faithfully embeddable in S_k . Hence, each pair of vertices from V_j is separated by at least two vertex-disjoint cycles in S_k in φ^c (see the note before (iii)). Hence, also the sets of vertices V_j^1 and V_j^2 are separated by two vertex-disjoint collections of cycles in S_k in φ^c . Since \overline{G}' joins z^1 with z^2 in S_k^* in φ^c , there is a self-singular point of S_k^* that allows this connection. Hence, we have $S_k^* \succ S_j^*$ by (iii), which contradicts $S_k^* \cong S_j^*$. Thus:

(2) There is no cycle of length greater than two in B_S .

Thus, S has a "tree structure". Suppose that at least two pseudosurfaces from S_1^*, \ldots, S_l^* are not spheres. Let $S_2, p_1, S_1, p_2, S_3, p_3, \ldots, p_{t-1}, S_t$ be a longest path in B_S such that both S_2^* and S_t^* are not spheres. Suppose that $t \geq 3$. Let z_1 be placed in p_1 and z_2 be placed in p_2 in φ .

Let \overline{G} be the subgraph of G/z_1z_2 induced by $G_2^*, G_3^*, \ldots, G_t^*$. By (iv) each $G_i^*, 2 \leq i \leq t$, is embedded in one pseudosurface $S_{i^c}^*$ in φ^c . Moreover, G_2^*, \ldots, G_t^* are joined to a (t-1)-path, by (ii). (More precisely, if we replace each G_i^* by a single vertex g_i , and join g_i with g_j by an edge whenever G_i^* and G_j^* have some common vertices, then \overline{G} will result to a path on t-1 vertices.) Thus, there are surfaces, say S_{i_1} and S_{i_2} , at distance 2t in B_S , such that $S_{i_1}^*$ and $S_{i_2}^*$ are not spheres, and either $S_{i_1}^*$ or $S_{i_2}^*$ are covered by planar graphs, possibly empty, in φ^c , which contradicts (iv). Hence:

(3) If S_i^* and S_j^* are not spheres, then S_i and S_j are at distance two in

Let S_1^* and S_2^* be not spheres. Let pS_1 and pS_2 be edges of B_S , and let z_1 be placed in p in φ . Suppose that S_1^* contains a self-singular point different from p that is occupied by z_2 in φ . Since p is the unique singular point lying in at least two pseudosurfaces that are not spheres, by (2) and (3), the vertex z_1z_2 is placed in p in φ^c , by (ii).

Let p be a self-singular point of S_i^* , $2 \le i \le l$. Then p is a self-singular point of $S_{i^c}^*$, by (ii) and (3). However, p is a self-singular point of $S_{1^c}^*$, while p is not a self-singular point of S_1^* , by (1). Since there is just a finite set of S_j^* that contains p as a self-singular point, by (iv) (the second part) we have:

(4) If S_i^* and S_j^* are not spheres and p is a self-singular point of S_i^* , then $p \in S_j^*$.

Hence, if there are three pseudosurfaces, say S_1^* , S_2^* , and S_3^* , that are not spheres, then they are glued in a unique singular point p, by (2) and (3). Moreover, if one of them, say S_1^* , contains a self-singular point p', then p' = p, by (4). Thus, the spherically-irreducible subspace of S contains at most one singular point. This completes the proof. \square

We remark that if a pseudosurface S is not minor-closed, then there are infinitely many graphs G embeddable in S such that G/xy is not embeddable in S for some $xy \in E(G)$, by Lemma 3. The problem of determining whether or not the embeddability in a given non-minor-closed pseudosurface can be characterized by a finite set of forbidden subgraphs remains open.

ACKNOWLEDGEMENT

I would thank to J. Širáň and M. Škoviera for their interest in this work and helpful comments.

REFERENCES

- D. Archdeacon, P. Huneke, A Kuratowski theorem for nonorientable surfaces, J. Combin. Theory Ser. B 46 (1989), 173-231.
- [2] R. Bodendiek, P. Gvozdjak, J. Širáň, On minimal graphs for bananas surface B₂, in "Contemporary Methods in Graph Theory (in Honour of K. Wagner)", Bibliographisches Inst., Mannheim, 1990, pp. 1-29.
- [3] R. Bodendiek, K. Wagner, Solution to König's graph embedding problem, Math. Nachr. 140 (1989), 251-272.

- [4] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271-283.
- [5] S. Negami, Ph.D.-Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1985.
- [6] N. Robertson, P. Seymour, Graph Minors. VIII. A Kuratowski theorem for general surfaces, J. Combin. Theory Ser. B 48 (1990), 255-288.
- [7] J. Širáň, P. Gvozdjak, Kuratowski-type theorems do not extend to pseudosurfaces, J. Combin. Theory Ser. B **54** (1992), 209-212.
- [8] A. T. White, *Graphs, Groups and Surfaces (rev. ed.)*, North-Holland, Amsterdam, 1984.