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ABsTRACT. A pseudosurface is obtained from a collection of closed surfaces
by identifying some points. It is shown that a pseudosurface S is minor-
closed if and only if S consists of a pseudosurface S°, having at most one
singular point, and some spheres glued to S° in a tree structure.
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1. INTRODUCTION

By a pseudosurface we understand a connected topological space result-
ing when finitely many identifications, of finitely many points each, are
made on a finite collection of closed surfaces (=compact 2-manifolds). Any
point obtained by such an identification of at least two distinct points is
called a singular point. Let G be a graph and S a surface or a pseudosur-
face. We say that G is embeddable in S if there is a continuous mapping
¢ : G — S which maps G homeomorphically onto its image ¢(G). An
embedding ¢ : G — S is called a 2-cell (or cellular) embedding if each
component of S — ¢(G), called a face, is homeomorphic to an open 2-cell.

Embeddability in a closed surface can be characterized by a finite set
of forbidden subgraphs; constructive proofs of this theorem were given
by Kuratowski for the sphere [4], Bodendiek and Wagner for orientable
surfaces [3], and by Archdeacon and Huneke for nonorientable surfaces [1].
It is natural to ask whether the same is true for pseudosurfaces. The answer
is negative in general, as shown by Sirdn and Gvozdjak in [7] for 2-banana
surface, i.e. the 2-amalgamation of two spheres. However, the 2-banana



surface is not minor-closed, see [2]. We remark that a surface S is minor-
closed if and only if the set of graphs embeddable in S is minor closed (i.e.
closed under a deletion of an edge or a vertex, and under contraction of an
edge).

As shown by Robertson and Seymour in [6], any minor-closed class of
graphs can be characterized by a finite set of forbidden subgraphs. Thus, it
seems to be reasonable to characterize minor-closed pseudosurfaces; by [6]
the embeddability in such pseudosurfaces can be characterized by a finite
set of forbidden subgraphs.

Let S be a pseudosurface. If S contains as a topological subspace a
sphere S; having exactly one singular point, then S is called spherically-
reducible. Otherwise, S is called spherically-irreducible. Clearly, from
each pseudosurface S we obtain a spherically-irreducible pseudosurface S°
by successively deleting the spheres that are ”glued” to the rest of the
pseudosurface in exactly one singular point. Moreover, S° is determined
uniquely by S. The main result of this paper is the following theorem:

THEOREM 1. Let S be a pseudosurface. Let S° be the spherically-
wrreducible pseudosurface that arises from S by successively deleting the
spheres containing exactly one singular point. Then S is minor-closed if
and only if S° contains at most one singular point.

2. PRELIMINARIES

Let G be a graph. As usual, V(G) denotes the vertex set of G and E(G)
the edge set of G. The degree of a vertex u in G is denoted by degg(u).
By G/uv we denote a graph that arises from G by contracting the edge
uv € E(G). A cycle on n vertices is denoted by C,, and a path on n vertices
is denoted by P,.

Let S be a closed surface and let G be a graph cellularly embedded in
S with F' faces. Then the number

x(S)

depends only on S (and not on G) and is known as the FEuler characteristic
of S. The non-negative quantity €(S) = 2 — x(S) is called the Euler genus
of S. If S is orientable, then S has a positive orientability characteristic.
Otherwise, S has a negative orientability characteristic. We remark that S
is determined uniquely by €(S) and the orientability characteristic.

Definitions and notations not included here can be found in White [8].

In what follows we introduce concepts of uniqueness and faithfulness due
to [5].
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Two embeddings @1, : G — S are said to be equivalent if there is
an automorphism ¢ : G — G and a self-homeomorphism h : S — § with
ho g1 = pa00. When there is just one equivalence class of embeddings of
G in S, G is said to be uniquely embeddable in S.

Faithfulness is defined as follows. Let ¢ : G — S be an embedding of
G in S. Then ¢ is said to be faithful if for any automorphism o : G — G,
there is a self-homeomorphism h : S — S such that hoyp = poo. In
other words, ¢ is faithful when all automorphisms of ¢(G) extend to self-
homeomorphisms of S. A graph G is said to be faithfully embeddable in S
if G has a faithful embedding in S.

Thus, G is uniquely and faithfully embeddable in S if G has a unique
embedding in S and this embedding is faithful.

For an arbitrary closed surface S there exists a graph uniquely and
faithfully embeddable in S by the following lemma [5, Proposition 1.4.7]:

LEMMA 1. Every closed surface admits an infinite number of triangula-
tions that are uniquely and faithfully embeddable in it.

Let G be uniquely and faithfully embeddable in S. Then G is uniquely
embeddable in S as a labeled graph. Consider a faithful embedding of G
in S. Then no automorphism of G can map a vertex u of G again to u and
rearrange the neighbors of u. This local property of faithful embedding
will often be tacitly used.

Let G be uniquely and faithfully embeddable in S, and let H be a subdi-
vision of G. Then obviously, H is again uniquely and faithfully embeddable
in S. Moreover, we have the following lemma [5, Corollary 1.5.7]:

LEMMA 2. Let G have a unique and faithful triangular embedding in a
closed surface S. If a 3-connected graph H is embeddable in S and contains
a subgraph contractible to G, then H is uniquely and faithfully embeddable
in S.

In the proof of Theorem 1 we use the following lemma:

LEMMA 3. FEvery closed surface S admits infinitely many triangulations
that are uniquely and faithfully embeddable in S, and that cannot be em-
bedded in S’ with e(S’) = €(S) and the opposite orientability characteristic.

Proof. Let G be uniquely and faithfully triangularly embeddable in S.
In what follows we construct the barycentric subdivision G5 of G and show
that Go satisfies the conditions in Lemma 3. First subdivide all edges of
G by one vertex and denote the resulting graph by G;. Clearly, G; has a
2-cell embedding, say (1, in S. Now insert one new vertex into each face
f of @1, join it to all vertices lying on the boundary of f, and denote the
resulting graph by Ga.
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Since G triangulates S and contains no loops, there are no multiple edges
in 3. Since G5 is 3-connected and contains a subgraph contractible to G,
(G5 is uniquely and faithfully embeddable in S, by Lemma 2. Moreover,
the unique embedding of G5 in §' is a triangulation of S.

Now assume that G2 is embedded in S’ with €(S’) = €(S). Then Gs
necessarily triangulates S’. Clearly, each 3-cycle in G2 contains exactly
one vertex from V(G), one vertex from V(G1)—V (G), and one vertex from
V(G2)—V(G1). Moreover, each edge of G2 lies in exactly two 3-cycles.
Thus, the surface admitting a triangular embedding of G5 is determined
uniquely, and hence S = §’.

By Lemma 1 there are infinitely many triangulations of S satisfying
Lemma 3. [

As a matter of fact, the graphs satisfying Lemma 1 were constructed
from triangulations by means of barycentric subdivision, see [5]. Hence,
they also satisfy Lemma 3.

3. PROOF OF THE MAIN RESULT

This section is completely devoted to the proof of Theorem 1.

Proof. Let S be a pseudosurface, and let S° be the spherically-irreduci-
ble pseudosurface that arises from S by successively deleting the spheres
containing exactly one singular point. Suppose that S° contains at most
one singular point.

Clearly, each pseudosurface is closed under deletion of an edge or a ver-
tex. Thus, it is sufficient to prove that S is closed under edge contraction.

Let G be a graph embeddable in S, and let ¢ be an embedding of G
in S. Then the subgraph of G embedded in § — S° in ¢ is planar. Thus,
G is embeddable in S°. Clearly, S° is closed under edge contraction, and
hence, S is minor-closed.

We now turn to the more difficult part of Theorem 1. The outline of the
proof is as follows. Suppose that S is a pseudosurface closed under edge
contraction. We construct a graph G embeddable in S with two specified
vertices z; and zy that are joined by an edge. Then we derive properties
(i) - (iv) of any embedding ¢° of G/z123 in S. Finally, considering various
positions of z; and z3 in G on S, and using (i) - (iv) we obtain assertions
(1) - (4) that complete the proof.

Let S be a pseudosurface resulting when identifications are made on a
collection S1, Ss, ..., S; of closed surfaces. For the sake of convenience, with
S we associate a bipartite multigraph Bg. The vertex set of Bg consists
of S;, 1 <1 <[, and the set P of singular points of S, and S; is joined
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to p € P by t edges if and only if ¢ points of S; have been identified to p.
Denote n = |P|, and n; = degp,(S;), 1 <i <I.

Let p be a singular point of S. If there is S;, 1 < ¢ < [, that is joined
to p by at least two edges in Bg, then p is called a self-singular point. By
S} we denote the topological subspace of S, which had been obtained from
Si, 1 <1 < I. More precisely, Bg: is a subgraph of Bg induced by multiple
edges incident with S;.

The construction of G

By Lemma 3 there are graphs H; uniquely and faithfully triangularly
embeddable in S;, 1 < ¢ <[, which cannot be embedded in S; with €(S}) =
€(S;) and the opposite orientability characteristic. We can assume that
each H; has at least n; vertices.

Figure 1

Now we locally describe a construction of a graph H] from H;, 1 < i <|.
We replace each vertex u of H; by the Cartesian product C,.4¢4 u, (u) X Pn2
and each edge by n+1 independent edges as shown in Fig. 1 for n = 2.
Clearly, H] is 3-connected, embeddable in S;, and contains a subgraph
contractible to H;. Thus, by Lemma 2 H] is uniquely and faithfully em-
beddable in S;, and the only embedding ¢} of H; in S; is just the one locally
described above.

For every u € V(H;) denote by f, the face of the embedding ¢; that
appears in the position of u in S;, 1 <4 < (see Fig. 1). For a moment
we concentrate on H;. Put one new vertex u' into each face f, of ¢,
and join v’ to all vertices incident with f,. There are at least n; such
added vertices u'; out of them we need to distinguish n;—1 vertices, say
Vyy ey Up .- Moreover, put one new vertex vi into the face where v has
been placed, join v to v3, and denote the resulting graph by G1, see Fig. 2.
Similarly, for each 7, 2 < ¢ < [, put one new vertex u’' into each face f, of
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@5, join u' to all vertices incident with f,, and denote the resulting graph
by G;. Denote by vi,... v} the n; vertices of V(G;)—V (H]), 2 <i <.
Finally, identify v{, ..., 1)7111, LI vfu into n vertices 21,...,2, in
the same way as the corresponding points of S, ..., S; have been identified
when constructing the pseudosurface S, and denote the resulting graph
by G. More precisely, there is a one-to-one correspondence between the
vertices 'v;:, 1<i<land1<j<n,; and the edges of Bg incident to S;.
Identify ’U; with U;’, whenever the corresponding edges of Bg are incident
to the same singular point. Note that the structure of G depends on the
ordering of the surfaces Si,...,S; and the singular points of S. However,
the assertions (i) - (iv) we are going to prove below do not depend on this

ordering.

Figure 2

Clearly, G' is embeddable in S. Denote by ¢ the embedding of G in §
which is determined by the embeddings ¢}, 1 <14 <, as described above.

Denote by z; and z» the vertices of G obtained from v} and vi, respec-
tively. Assume that z; # z9. Suppose that G/z1z2 is embeddable in S
and denote by ¢¢ an embedding of G/z125 in S. In what follows we derive
some properties of °. (We remark that so far we have not had any reason
to expect that the supposed embedding ¢¢ of G/z129 in S has anything in
common with the original embedding ¢ of G in the same S.)

Basic properties of ¢°

There are m < n vertices, say &1, %2, ..., Tm, of G/z12 embedded in the
singular points of S in ¢°. Let H' be a subgraph of G/z12z9. If H' contains
no vertex from {zq,...,2,}, then H' is called an unbroken subgraph of
G/z125.

For each 7, 1 <1 <[, let us do the following. Find a connected subgraph
H! of H — {x1,...,%y} that is uniquely and faithfully embeddable in S;.
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For each u € V(H;), include to H}' all unbroken copies of Cr-degn, (u) 3t
u. (Since m < n, for each u € V(H;) there are at least two copies of
Ch-degp, (u) I H]'.) Moreover, for each uv € E(H;), include to H;' all those
unbroken copies of P,;2 at u that correspond to the unbroken copies of
P, .5 at v, together with the edges joining them. (Since m < n, for each
edge uv € E(H;) there is a pair of corresponding copies of P, o in H}'.)
Finally, throw away the endvertices of H/', see Fig. 3.

Clearly, H!' contains a subgraph contractible to H;. Since H} is a sub-
graph of H], H; is embeddable in S;. Moreover, from H]' we obtain a
3-connected graph by a successive contraction of edges incident with ver-
tices of degree two. Thus, H/ is uniquely and faithfully embeddable in S;,
by Lemma 2 and the note before Lemma 2.

Note that each H]' is embedded in one closed surface, say Si, in ¢°,
since the connected graph H]' contains no vertices placed in singular points.
Clearly, €(S;) < €(S;c), since H; triangulates S; and H;' contains a subgraph
contractible to H;. Let J, = {j : €(S;) > t}, t > 0. Assume that there
is ¢t such that Sje = S; for each j € J; (this is certainly true for ¢ large
enough). Let j € J;. Then ¢ induces a cellular embedding of HY in Sje.
Thus, only planar graphs can be embedded in Sjc together with H J’-’ . By
the finiteness of J, for each j € J, there is k € J; such that S = S; (since
t > 0, H;! is not a planar graph).

Suppose that €(S;) = ¢. If S; is not a sphere, then H/' is not a planar
graph, and hence ¢ ¢ J;. Thus, €(S;c) < €(S;) and hence €(S;c) = €(S;).
Moreover, since H; is not embeddable in S’ with €(S") = €(S;) and the
opposite orientability characteristic, we have S;c = S;. Hence, S;jc = S; for
each j € J;_;. Thus:

(i) For each i, 1 < i < I, ¢° induces an embedding of H! in S,
1 <1¢ <I. If S; is not a sphere, we have S;c = S;. Moreover, if
i1 # iz, and S;, and S, are not spheres, then Si # Sic.

Figure 3

Clearly, each vertex from V(G;)—V (H}) (except vi) is joined to H}' by
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at least n+1 vertex-disjoint paths in G;. Since v{ and v5 are identified into
a single vertex in G/z1z2, we have:

(ii) All vertices of G/z1 22 that have been obtained by the identifica-
tion of some vertices from V(G;)—V (H]), and possibly some other

vertices, lie in Sj. in ¢¢, 1 <141 <|.

Suppose that S; is a sphere, but S;c is not. Then there is a j such that
S; is not a sphere and Sje = S;c, by (i) (the second part). Moreover, ¢°
induces a cellular embedding of H' in S;c, and hence, H;' is embedded in
one cell of the embedding of H in S;e. Thus, ¢° induces an embedding of
H! in S;c that arises from the embedding of H; in S;, since H}' is uniquely
and faithfully embeddable in the sphere (we do not distinguish the exterior
face of the embedding of H/ in the cell). Analogously, if S; is not a sphere,
or if S;e is a sphere, then ¢° induces an embedding of H/' in S;c that arises
from the embedding of H; in S;, by (i).

Let V; = {vi,..., v} } — {vi}. Denote by f, the face of the embedding
of H! in S;c that corresponds to the face f, in ¢}, see Fig. 3. Since m < n,
for all pairs u,v € V(H;) there are at least four vertex-disjoint cycles in
the embedding of H/' in S;c that separate f, from f,, namely the copies of
Cn-degHi (w) and Cn.deng_ (v)- Suppose that u,v € V; have been identified to
z in G/z12z9. Since there are at least two vertex-disjoint cycles separating
u from v in S;c in ¢ (the exterior ones, see Fig. 3), z is placed in a self-

*

singular point of S}. in ¢°. Analogously, we have:

(iii) Let vy,...,vq € V; be identified to a vertex z in G/z1z2, a > 2.
Then z is placed in ¢° in a self-singular point p of S}. that is joined
to S;c by at least a edges in Bg.

Now we introduce a lexicographical ordering of pseudosurfaces S}, for
which S;; 2 §;, according the multiplicities of edges in BS;,. Let S;, =
Si,- Let S} contain by self-singular points with multiplicities (i.e. the
multiplicities of edges in BS;k) ab > ... > a’gk, 1 <k < 2. We write
Sy =57, it and only if from agl- > a?, 1 < 5 < by it follows that there is 7,
1 <j' <j, with aj, < a}. If S} < Sf and Sf %S, we write S} < S},.

Let z be a vertex of G/z1z2 that has been obtained by the identifica-
tion of a vertex from V;, and possibly some other vertices. Denote by P,
the collection of the paths joining z to H} that contain no vertex from
{z1,...,zm} (except possibly z). Clearly, for each such z there is at least
one path in P, with this property. Denote by G} the subgraph of G/z 2,
induced by H;' and the paths P,, where z is obtained by the identification
of a vertex from V;, see Fig. 3 (the vertices z;; in Fig. 3, 1 < j < 3, need
not necessarily be distinct). Since H|’ is embedded in S;c in ¢°, the graph
G} is embedded in S}, by (ii).

Suppose that S; is not a sphere. Then S;c = S;, by (i). Moreover,
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we have S »= S}, by (ii) and (iii). Note that S{. = ST also if z; and
zo are self-singular points of Sj. (We remark that S > S} is only a
necessary but not a sufficient condition for embeddability of G} in S}.). Let
J={j: 8> S;} By (i) (the second part), if k1 # ko, and k1, k2 € J,
then Ske # Skg. Since J is a finite set, Sj. > S contradicts S7. = S7,
Jj € J. Hence, S} =2 S;.

Now suppose that S; is a sphere, but S} is not. Moreover, suppose that
Sic is not a sphere, either. Then there is a j such that S; is not a sphere
and ¢° induces an embedding of G} in S}. with Sf. = S}, by (i) (the
second part). As shown above, we have S ; = Sj.. Since S is not a sphere,
there is a self-singular point in S;. Since z; # 2 in G, there are at least
two vertices, say u,v € V; that have been identified into a single vertex in
G}. However, ¢¢ induces an embedding of H in S, that arises from the
embedding of H; in S; (see the note below (ii)). Thus, at least one of the
vertices u and v, say u, is separated from each vertex from V; (and also
from V;—u) by a cycle in S;c in ¢°. Since G7 is embedded in S in ¢° we
have Sj. = 57, as shown above. Since u is separated from each vertex from
Vj U (Vi—u) by a cycle in S;c in ¢, we have S = S, which contradicts
S;e = 57. Hence, if 57 is not a sphere but S; is, then S;e is a sphere, too.

Now analogously as above, if S} is not a sphere but S; is, we have
Sj. = S7, by (ii) and (iii). Moreover, if S is not a sphere but S;, is,
1 <k <2, we have S # Sic. Hence, we have Sj. = 57, since the set of
those j for which 57 > S is finite. Thus:

(iv) For each i, 1 <1i <1, ¢¢ induces an embedding of G} in S}.. If S¥
is not a sphere, we have Sj. = SF. Moreover, if i1 # i3, and S},
and Sj, are not spheres, then Sj. # Si.

Necessary conditions for S

To obtain the necessary conditions in Theorem 1, we now need to utilize
the "finer structure” of GG, that is, the way how G depends on the labelling
of the surfaces and the singular points. In fact, we only need to consider
the vertices z; and 29 in G.

Suppose that z; and z2 are placed in two self-singular points of ST in
¢. Let z; be obtained by the identification of ¢; vertices of Gy, 1 < 5 < 2.
Suppose that G% is embedded in S}. in ¢°. Since t1+t3—1 > max{tq, s},
we have S}. > ST, by (i) and (iii). By (iv) we have:

(1) No pseudosurface S} contains more than one self-singular point,
1< <.

Suppose that Bg contains a cycle of length at least four. Let pi, S,
P2, - - ., D¢, S¢, 1 be a shortest cycle in Bg such that ¢ > 2. Let z; be placed
in p; and 23 be placed in ps in ¢. Let G be the subgraph of G/z1 2> induced
by G3,G3, ..., G}.
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By (iv) each G}, 2 < i < t, is embedded in one pseudosurface S} in
©°. Hence, G is embedded in one pseudosurface, say Sg,in ¢ if t = 2.
Now suppose that ¢ > 3. Then G3, ..., G} are joined to a (t—1)-cycle, by
(ii). (More precisely, if we replace each G} by a single vertex g;, and join
gi with g; by an edge whenever G} and G7 have some common vertices,
then G will result to a cycle on t—1 vertices.) Since 2t is the length of a
shortest cycle of length at least four in Bg, the graph G is embedded in
one pseudosurface, say Sy, if t > 3.

Since G is not a planar graph, S; is not a sphere. By (iv) (the second
part), at most one pseudosurface from S5, ..., S is not a sphere. If S} 2 S
for each 7, 2 < i < t, then the finiteness of the set of those j for which
St = Sy contradicts (iv). Hence, Sy = S for some j, 2 <j <t, and S} is
the unique pseudosurface from S5, ..., S} which is not a sphere.

Suppose that t = 2. Then G = G = G5 and the vertex z; 22 is embedded
in a self-singular point of S} in ¢°. Hence we have S; > S5, by (iii), which
contradicts S = S5.

Now suppose that ¢ > 3. Let G’ be the subgraph of G induced by G7,
2<i<tandi#j. Then G’ is a connected graph containing two distinct
vertices, say 2" and 2%, of G3. Let z* be obtained by the identification of a
set ij vertices from Vj, and possibly some vertices outside V;, 1 <14 < 2.
Since Sy, = Sj, the graph H' is uniquely and faithfully embeddable in S.
Hence, each pair of vertices from Vj is separated by at least two vertex-
disjoint cycles in Si in ¢° (see the note before (iii)). Hence, also the sets of
vertices le and Vj2 are separated by two vertex-disjoint collections of cycles
in Si, in ¢°. Since G’ joins z!' with 2% in S} in ¢, there is a self-singular
point of S that allows this connection. Hence, we have Sy - S by (iii),
which contradicts Si = S7. Thus:

(2) There is no cycle of length greater than two in Bg.

Thus, S has a ”tree structure”. Suppose that at least two pseudosurfaces
from ST, cey Sl* are not spheres. Let Sz,pl, S1,p2, 53,p3, ey Pt—1, St be a
longest path in Bg such that both S5 and S} are not spheres. Suppose
that ¢ > 3. Let z; be placed in p; and z3 be placed in py in ¢.

Let G be the subgraph of G/z2; induced by G%,G%,...,G;. By (iv)
each G}, 2 <1 <t, is embedded in one pseudosurface S;. in ¢°. Moreover,

%: .., G} are joined to a (t—1)-path, by (ii). (More precisely, if we replace
each Gj by a single vertex g;, and join g; with g; by an edge whenever G}
and G} have some common vertices, then G will result to a path on ¢t—1
vertices.) Thus, there are surfaces, say S;, and S;,, at distance 2t in Bg,
such that S and S/, are not spheres, and either S} or S; are covered by
planar graphs, possibly empty, in ¢°, which contradicts (iv). Hence:

(3) If S} and S} are not spheres, then S; and S; are at distance two in
10



Bg.

Let ST and S5 be not spheres. Let pS; and pS2 be edges of Bg, and
let z1 be placed in p in . Suppose that ST contains a self-singular point
different from p that is occupied by z; in ¢. Since p is the unique singular
point lying in at least two pseudosurfaces that are not spheres, by (2) and
(3), the vertex z1z is placed in p in €, by (ii).

Let p be a self-singular point of S}, 2 <+4¢ <[. Then p is a self-singular
point of S}, by (ii) and (3). However, p is a self-singular point of S7., while
p is not a self-singular point of SF, by (1). Since there is just a finite set
of S7 that contains p as a self-singular point, by (iv) (the second part) we
have:

(4) If S} and S} are not spheres and p is a self-singular point of S},
then p € S5.

Hence, if there are three pseudosurfaces, say S7, S5, and S3, that are
not spheres, then they are glued in a unique singular point p, by (2) and
(3). Moreover, if one of them, say ST, contains a self-singular point p’, then
p' = p, by (4). Thus, the spherically-irreducible subspace of S contains at
most one singular point. This completes the proof. [

We remark that if a pseudosurface S is not minor-closed, then there are
infinitely many graphs G' embeddable in S such that G/xy is not embed-
dable in S for some zy € E(G), by Lemma 3. The problem of determining
whether or not the embeddability in a given non-minor-closed pseudosur-
face can be characterized by a finite set of forbidden subgraphs remains
open.
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