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1. INTRODUCTION

All digraphs considered in this paper are finite, without loops or multiple arcs.

Let D be a digraph. Then V(D) denotes the node set of D and E(D) the arc
set of D. If u,v € V(D) then dp(u,v) denotes the length of a shortest path from
uw to v in D. If there is no path from u to v, we set dp(u,v) = co. We note that
oo > k for all natural k.

In what follows we recall definitions of probably most usual radii in digraphs.

Let D be a digraph and u € V(D). Then:

out-eccentricity of the node u is ef(u) = max (dp(u,v));
veV (D)

in-eccentricity of the node u is ep(u) = max (dp(v,u));
veV (D)

eccentricity of the node u is ep(u) = max (ef(u), ep(u)) -

The out-radius r* (D) (in-radius r— (D), radius r(D)) is the minimum value of
ep(u) (ep(u), ep(u)), u € V(D). We note that an upper bound for the number of
arcs in digraphs with a prescribed number of nodes and a finite out-radius is given
in [4].

Now we recall the definitions of minimality, criticity, and maximality:

Definition 1.1. Let D be a digraph (graph), and let f be an invariant of D. Then
D is called:
minimal by f, if f(D —e) # f(D) for every arc e of D;
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critical by f, if f(D —u) # f(D) for every node u of D;
mazximal by f, if f(D+e)# f(D) for every arc e of the complement of D.

For the sake of convenience, instead of writing out-radius, in-radius, and radius
we use the symbols 7T, 7—, and r, respectively. We remark that the exact value of
the out-radius, in-radius, and radius in the digraph D is always denoted by r* (D),
r— (D), and r(D), respectively.

The graphs minimal, critical, and maximal by connectivity, edge-connectivity,
being block, arboricity, and chromatic number can be found in books [1] and [3].
A survey on graphs minimal, critical, and maximal by diameter and radius can be
found in [2]. Here we recall the results on graphs minimal, critical, and maximal
by radius.

Only for this paragraph, let » denote the usual radius in graphs. The classes of
graphs minimal by r, critical by r, and maximal by r have been studied already.
Trees are the only graphs minimal by 7, see [5]. The graphs maximal by r with
radius 2 are characterized in [7]. In [5] and [6] it is shown that each graph may be
an induced subgraph of some graph that is critical by r, maximal by r, and has a
prescribed radius ¢, 3 < t < oco. Here the research is continued for digraphs. We
examine the digraphs minimal, critical, and maximal by out-radius, in-radius, and
radius.

Deleting an arc e from a digraph D we cannot decrease distances between any
two nodes. Hence, 7 (D —e) > r™ (D), 7= (D —e) > r— (D), and r(D — e) > (D).
Analogously, adding a new arc e to D we have r*(D +e¢e) < rt(D), 7= (D +e) <
r~(D), and r(D+e) < (D). Thus, in the definition of digraphs minimal by r*+ (r~,
r), the symbol # can be replaced by >, and in the definition of digraphs maximal
by 7t (r~, r), the symbol # can be replaced by <.

The following assertion enables us to restrict our considerations to radius r* and
r only.

Proposition 1.2. Let D be a digraph and let D' arise from D by reversing the
orientation of all arcs. Then r™ (D) =r—(D").

Proof. We h 5 = dp(u, = dpi (v, = ep/(u). Thus,
roof. We have e],(u) 1)énvazx)( p(u,v)) veme(txl)( p(v,u)) = ep (u) us
T(D) = mi pa = mi Iy =r—(D"). O

(D) uEVl(I;))eD(u) uevl(Izl)')eD (u) =r= (D)

In this paper we characterize some classes of minimal, critical, and maximal
digraphs, while for the other we show that they are large in terms of induced
subgraphs. Further results on minimal and critcal digraphs will be presented in [8].

Since a single node is the only digraph with out-radius (radius) zero and it is
minimal, critical, and maximal by r* and r, too, we restrict our considerations to
digraphs with out-radius (radius) greater than zero.

The outline of this paper is as follows. In section 2 we show that almost no
digraph can be a subgraph of a digraph minimal by 7. In section 3 we show that
each digraph may be an induced subgraph of some digraph that is critical by r
with radius two. Moreover, in sections 3 and 4 we describe all digraphs critical
by r, critical by 7T, maximal by r, and maximal by r*, for radii 1, 2, and oo,
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except the digraphs critical by r with radius 2 on odd number of nodes. Finally, in
section 5 we show that each digraph may be an induced subgraph of some digraph
that is critical by rT, critical by r, and maximal by 7+, (maximal by r), and has a
prescribed value t of out-radius or radius, 3 < ¢ < oo.

Let D be a digraph. Then D denotes the complement of D. By idp(u) we
denote the input degree and by odp(u) the output degree of a node u € V(D). If
u € V(D), we denote:

N;f(u) ={v € V(D) : dp(u,v) =i} for i=0,1,2,...;
N7 (u) ={ve V(D) : dp(v,u) =14} for i=0,1,2,....

Definitions and notations not included here can be found in Buckley - Harary [2]
or in any other elementary book on Graph Theory.

2. MINIMAL DIGRAPHS

This section is devoted to minimal digraphs. Note that there are no digraphs
minimal by r* (r) with out-radius (radius) infinity, by Definition 1.1.
In [8] Ky5 gives the following characterization of digraphs minimal by r*:

Theorem 2.1. A digraph D is minimal by r* if and only if D is a directed rooted
out-tree (i.e. acyclic digraph with idp(z) = 1 for all x € V(D), except the root u
for which idp(u) = 0).

Hence, the digraphs minimal by 7T are very simple. In what follows we consider
only the digraphs minimal by 7.

Proposition 2.2. A digraph minimal by r with radius one consists of a couple of
oriented two-cycles that share a node.

Proof. Let D be a digraph minimal by r and r(D) = 1. Then there is a node
u € V(D) such that ep(u) = 1. Thus, uz,zu € E(D) for all z € V(D), x # u.
Since D is minimal by 7, D does not contain other arcs. [

Let D be a digraph minimal by 7. As mentioned above we have r(D) < oo, and
hence, D is strongly-connected. On the other hand, if D is minimal by strongly-
connectivity (i.e. D is strongly-connected, but D — e is not strongly-connected for
every e € E(D)), D is minimal by r.

Let D consist of a couple of oriented cycles, having some common nodes, that
have a tree structure. (See the digraphs in Proposition 2.2.) Then for each u,v €
V(D) there is a unique u-v path in D, and hence, D is minimal by strongly-
connectivity. However, there are other digraphs minimal by strongly-connectivity
(see Fig. 2.1). Moreover, there are digraphs minimal by r, that are not minimal by
strongly-connectivity (see Fig. 2.2 and Fig. 2.3).




Fig. 2.1 Fig. 2.2 Fig. 2.3

Up to now we are not able to characterize the digraphs minimal by r with radius
greater than 1. However, we have the following assertion:

Proposition 2.3. A digraph minimal by r does not contain the complete symmet-
ric digraph on three nodes as a subgraph.

Proof. Let D be a digraph minimal by r. As mentioned above, D is strongly
connected. Let u € V(D) such that ep(u) = 7(D). Then there are oriented paths
from u to each node of D, and also paths from each node of D to u. Thus, there is
a directed out-tree Tt, in-tree T, rooted at u, which is a spanning tree of D. We
can assume that r*(T7) = et (u) and r—(T7) = e~ (u).

Suppose that there is an arc e in D such that e ¢ E(T*) and e ¢ E(T~). Then
ezrD_e) (u) = e}, (u) and €(D—c) (u) = ep(u), which contradicts (D —e) > r(D).
Hence, each arc of D belongs to either T or T~

Let z, y, and z be three distinct nodes of D. Since each forest on three nodes

contains at most two arcs, there are at most four arcs between the nodes z, y, and
zinD. O

Since almost all digraphs contain the complete symmetric digraph on three nodes
as a subgraph (see e.g. [9]), we have the following corollary of Proposition 2.3:

Corollary 2.4. Almost no digraph can be a subgraph of a digraph minimal by 7.

3. CRITICAL DIGRAPHS

This section is devoted to digraphs critical by out-radius (radius).

Let G be an unoriented graph critical by radius. Let the digraph D arise from G
by replacing the edges of G' by pairs of opposite arcs. Then clearly, D is critical by
r, and also by ™ and by r~. However, there are digraphs critical by r* (r) which
do not correspond to unoriented graphs.

In the first section of this paper we have shown that r*(D —e) > rT(D) and
r(D —e) > r(D) for each e € E(D), and also that r™(D +e) < r7(D) and
r(D+e) < r(D) for each e € E(D). Now we give analogous conditions for r*(D—u)
and (D — u), where u € V(D).

Proposition 3.1. Let D be a digraph and u € V(D). Then:
r(D—u)>r(D)—-1ifr(D) < oo;
rt(D—u) > 7t (D) -1 if r7(D) < oo and idp(u) > 1.

Proof. Let r(D) < oco. Suppose that there is u € V(D) such that r(D—u) < r(D)—
2. Then there is z € V(D—u) such that eirD_u)(z) < r(D)— 2 and e(_D_u)(z) <
r(D) — 2. Since r(D) < oo, D is strongly-connected. Thus, idp(u) > 1 and
odp(u) > 1. Hence, €},(z) < r(D)—1and e, (z) < r(D)—1. Thus, r(D) < r(D)—1,
a contradiction.

By analogous arguments the second part of the lemma can be proved using
idp (u) >1. O
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The digraphs critical by r* (r) with out-radius (radius) infinity are characterized
in Proposition 3.3 (Proposition 3.6). Hence, the following assertion characterizes
the remaining digraphs that do not satisfy Proposition 3.1.

Proposition 3.2. Let D be a digraph with r*(D) < oo, and let vy € V(D) such
that idp(vo) = 0. Then D is critical by r* if and only if V(D) = {vo, v1, ..., v+ )}
and N;(vo) = {v;}, 1 <i <rT(D).

Proof. Clearly, D is critical by 7T if D satisfies the conditions in the assertion.

Now suppose that r*(D) < oo, idp(vg) = 0, and D is critical by r*. Since
dp(z,v9) = oo for every x € V(D), & # wvp, we have ef(vy) = r7(D) < oo.
Hence, there are nodes vi,v2,...,v,+(p) such that v; € Ni‘|r and v;_1v; € E(D),
1 <i<rt(D).

Suppose that [V(D)| > r¥(D) + 1. Let 5 = max{i : |N; (vo)| >
z € N;L(vo), z # vj. Since |Nij|_1| < 1, we have ef,__(vo) = e}
N (vo) = {v;}, 1<i<rH(D). O

2}, and let
vg). Hence,
The following class of digraphs critical by r™ demonstrates Proposition 3.1 for
the out-radius. Let D,, consist of two oriented cycles of length n that are joined by
a pair of opposite arcs. Then D, is critical by r+ and {r™(D,, —v): v € V(D,)} =
{n—1,n+1,n+2,...,2n—-2,00}.

From now on we consider only the digraphs with radii oo, 1, and 2. We remark
that the unique graph critical by radius with radius oo consists of two isolated
nodes. Further, the unique graph critical by radius with radius 1 consists of two
nodes joined by an edge. Finally, a graph G with radius 2 is critical by radius if
and only if either G is a path on four nodes or G is a complete multipartite graph
Ks 5 . 2 (except Ks), see [5].

9 hgenny

At first we characterize the digraphs critical by r.

Proposition 3.3. Let D be a digraph critical by r+. Then:
D consists of two isolated nodes, if (D) = oo;
D consists of two nodes joined by one or two arcs, if r*(D) = 1.

Proof. Suppose that r+(D) = occ. Then obviously, D contains at least two nodes.
Let u € V(D). Since D is critical by rT, there is a node, say v/, such that
ef_,(u') < oo. Thus, for each z € V(D) — {u,u'} we have dp(v/,z) < cco. Since
rT(D) = oo, we have idp(u) = 0. Analogously, idp(z) = 0 for each z € V (D), and
hence D is a discrete digraph. Since D is critical by 7™, the D contains just two
nodes.

Suppose that r7(D) = 1. Then there is u € V(D) such that uz € E(D) for
every x € V(D), x # u. Since D is critical by 7+, we have |[N;f (u)| =1. O

Now we describe the digraphs critical by rT with out-radius 2.

Theorem 3.4. Let D be a digraph such that r* (D) =2 and |V (D)| > 5. Then D
is critical by v if and only if the complement of D consists of a couple of oriented
cycles.
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Proof. Just for this proof we write that a node a is friend-but(b) if az € E(D) for
every z € V(D), x # b, and ab ¢ E(D).

Suppose that D is critical by r*, r*(D) = 2, and |V (D)| > 5. At first we prove
that r+(D — z) = 1 for every z € V(D).

Let ¢ be a node such that ef(c) = 2, and z € N5 (c). Since D is critical by
r* and eE"D_z)(c) < 2, we have r*(D — z) = 1. Thus, there is a node u that is
friend-but(z). Since dp(c, z) < oo, there is a node v such that vz € E(D). Then
v € Ni (u) and z € N5 (u). Clearly, eE"D_g&)(u) < 2 for every z € Ny (u) such that
z #v. Thus, r*(D — z) =1 for every x € V(D) such that = # u and = # v.

Suppose that r¥(D — v) > 2. Since |V (D)| > 5, we have |N; (u)| > 3. Thus,
there are two distinct nodes, say w; and ws, in Ni (u), such that w; # v and
wy # v. As shown above, we have r*(D —w;) = 1, 1 < i < 2. Thus, there is a
node w; that is friend-but(w;), 1 <14 < 2. Since wy # w2, we have w} # wj. Since
vw; € E(D), we have w, # u, 1 <14 < 2. Since e(+D_U)(z) < 2if zu € E(D), we
have w} # 2z, 1 <4 < 2. Thus, w} € Ni"(u), 1 < i < 2. Since w} is friend-but(w;),
we have wiz € E(D), 1 <14 < 2. Since w}j # wh, we have eELD_U) (u) = 2, and hence
rT(D —v) =1, a contradiction. Thus, r(D — ) =1 for all z € V(D), z # u.

Since 7+ (D —wv) = 1, there is a node, say y, that is friend-but(v). Since z # v, we
have u # y. But using arguments analogous as above, we obtain that eZLD_u) (y) <2,
and hence r*(D —u) = 1. Thus, r*(D —z) =1 for every z € V(D).

Now we describe the structure of D.

Since (D) = 2, we have odg(z) > 1 for every z € V(D). Since r*(D —z) =1
for every z € V(D), for each 2z € V(D) there exists ' € V(D) that is friend-but(z).
Since the zs are mutually distinct (the V(D)), also the z’s are mutually distinct.
Thus, the set of 2s is just V(D). Hence, ody(z) = 1 for every z € V(D).

Suppose that there is y € V(D) such that id5(y) = 0. Since r™(D —y) = 1,
there is a node 3’ that is friend-but(y). Thus, y'y € E(D), a contradiction. Since
odg(z) = 1 for every z € V(D), we have |E(D)| = |V(D)|, and hence idg(z) = 1
for all z € V(D). Thus, id5(z) = odg(xz) = 1 for every z € V(D), and D consists
of a couple of oriented cycles.

Clearly, if idp(z) = odp(z) = 1 for every x € V(D) and |V(D)| > 3, then D is
critical by r* and r*(D) =2. O

: : >

QOGO P

Fig. 3.1
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There are just three digraphs D which complement consists of a couple of oriented
cycles, and 3 < |V(D)| < 5. One can verify that there are just seven digraphs
critical by ™ with out-radius 2 that do not satisfy the conditions in Theorem 3.4,
namely the digraphs in Fig. 3.1. Thus, we have the following corollary:

Corollary 3.5. Let D be a digraph critical by r+ with out-radius two. Then either
|[V(D)| > 3 and the complement of D consists of a couple of oriented cycles, or D
s one of the seven digraphs pictured in Fig. 3.1.

Now we characterize the digraphs critical by r with radii oo, 1 (Proposition 3.6),
and the digraphs critical by r with radius 2 on even number of nodes (Theorem 3.7).

Proposition 3.6. Let D be a digraph critical by r. Then:
D consists of two nodes and at most one arc, if r(D) = oo;
D consists of two opposite arcs, if r(D) = 1.

Proof. Suppose that (D) = oo. Then D is not strongly-connected. Thus, D has at
least two strongly-connected components. Since r(D —u) < oo for every u € V (D),
D has just two strongly-connected components, each consisting of a single node.

Suppose that r(D) = 1. Then there is u € V(D) such that uz,zu € E(D) for
all z € V(D), & # u. Since D is critical by r, we have |V(D)|=2. O

The digraphs critical by r with radius 2 are rather complicated. However, the
following theorem characterizes those of them that have an even number of nodes.

Theorem 3.7. Let D be a digraph on even number of nodes such that r(D) = 2
and |V (D)| > 6. Then D is critical by r if and only if the complement of D consists
of a couple of independent arcs and oriented two-cycles.

Proof. Clearly, D is critical by r if D consists of a couple of independent arcs and
two-cycles.

Just for this proof we write that a node a is friend-but(b) if ax,za € E(D) for
every € V(D), z # b, and ab or ba are not in E(D). (We remark that the
definition in the proof of Theorem 3.4 is slightly different.)

Let D be a digraph critical by r, such that |V(D)| > 5 and r(D) = 2. At first
we describe the structure of D if D contains two nodes, say v and u’, such that v’
is friend-but(u).

Since v’ is friend-but(u) and D is strongly-connected, we have ep(u’) = 2. Since
|[V(D)| > 5, we have |V(D) — {u,u'}| > 3. Thus, there is a node v € V(D) such
that dp_y)(v',u) < 2 and dp_y)(u,u') < 2. Since D is critical by 7, we have
r(D —v) =1 and there is v' € V(D) that is friend-but(v).

Clearly, u, v/, and v are distinct nodes. Obviously, v’ # v’ and v’ # v. Since u
is friend-but(v) implies that wu', v'u € E(D), we have v’ # u. Hence, u, u’, v, and
v’ are distinct nodes.

Since |V (D)| > 5, there is one more node z € V(D) distinct from the u, u', v,
v'. Since v'u,uv’ € E(D), we have ep_,)(u') = 2 > r(D — z). Hence, there is
z' € V(D) distinct from all u, u/, v, v, z, that is friend-but(z).
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Thus, v’ is friend-but(u), v’ is friend-but(v), and 2’ is friend-but(z). Continuing
these considerations we obtain that V(D) = {u;,ul; 1 < i < k} for some k > 3,
where ] is friend-but(u;), 1 < i < k.

However, e(p_u/)(u3) < 2, since uzuz, uguy € E(D). Thus, r(D — uj) =1, and
there is a node z that is friend-but(u]). Since u} is friend-but(u, ), we have x = u;.
Analogously, u; is friend-but(u}), 1 < ¢ < k. Thus, the complement of D consists
of a couple of independent arcs and two-cycles as required.

In what follows we suppose that D contains no pair of nodes =, 2’ such that =’
is friend-but(x). Then (D — x) # 1 for each z € V(D).

Let u be a node such that ep(u) = 2, and y € Ny (u). Since 2 > e(p_y)(u) >
r(D —y) if dp(y,u) = 2, we have yu € E(D). Thus, for every y € N5 (u) we have
yu € E(D).

Suppose that there is z € N; (u) such that zy ¢ E(D) for every y € N, (u),
moreover, let xu ¢ E(D) whenever possible. Then €(D—2) (u) <2 and eE"D_w)(u) <
2. Hence r(D—z) = 1, a contradiction. Thus, for each z € N (u) there is y €
N5 (u) such that zy € E(D).

Suppose that |N;"(u)| > | N5 (u)]. Since for each z € N, (u) there is y € N5 (u)
such that zy € E(D), there is w € N; (u) such that e(p_.)(u) = 2. Hence,
r(D — w) = 1, a contradiction.

Suppose that |N; (u)| < |NJ(u)]. Then there is w € N (u) such that
e(D—w) (%) = 2, a contradiction.

Thus |[N;"(u)| = [Ny (u)|, and hence D has an odd number of nodes. [

Hence, the class of digraphs critical by r with radius 2 on even number of nodes
is pure in terms of induced subgraphs. However, for odd number of nodes we have
the following theorem:

Theorem 3.8. Let D be a digraph. Then there are infinitely many digraphs critical
by r with radius two on odd number of nodes, containing D as an induced subgraph.

Proof. Let V(D) = {v1,v2,...,v,} and let k& > n+1l. Let V(Hg) = {u,v1,
V2« oy Uk, 21, 22, - - -, 2k} and let E(Hy) consist of E(D), uv;, v;z;, ziu, 1 < i < k.
In what follows we show that H} satisfies the conditions in the theorem.

Clearly, |V (Hg)| = 2k+1, and Hj contains D as an induced subgraph. Since
k > n, we have ef; (v;) = e (2) =4, 1 <i <k, and ey (u) = 2.

Since id(g_y,)(2:) = 0, we have r(H — v;) = oo, 1 < i < k. Analogously, r(H —
r) = oo if x € {u, 2n41, 2n42,. .., 2k} Since dg_,)(vi,u) > 3, eE"H_Zl)(vi) > 3,
and e(_H_Zl)(zi) > 4,2 <4<k, wehave r(H —z;) > 3. Analogously, r(H —z;) > 3,
1<i<n. O

4. MAXIMAL DIGRAPHS

In this section we characterize the digraphs maximal by r* (r) with out-radii
(radii) oo, 1, and 2.
We remark that a graph G' with radius oo is maximal by radius if and only if G
consists of two complete graphs. Further, a graph G with radius 1 is maximal by
8



radius if and only if G is a complete graph on at least two nodes. Finally, a graph
G with radius 2 is maximal by radius if and only if the complement of G consists of
a collection of (at least two) stars (i.e. the complete bipartite graphs Ki 5, s > 1),
see [7].

In what follows we characterize the digraphs maximal by .

Proposition 4.1. Let D be a digraph and r* (D) = oco. Then D is mazimal by
rT if and only if V(D) can be partitioned into A;, 1 < i < 3, such that Ay # 0,
Ay # 0, the digraph induced by A; is complete, 1 < i < 3, and for all a; € Ay,
ag € As, ag € Az we have ajasz, azaz € E(D) and there are no other arcs in D.

Proof. Clearly, if D satisfies the conditions in Proposition 4.1, D is maximal by rT
with out-radius oco.

Now suppose that D is maximal by r+ with out-radius co. Denote by S1, So, ...,
Sy the strongly-connected components in D. Since 7+ (D) = oo, we have m > 2.
Since D is maximal by r+, each S;, 1 < 4 < m, is a complete symmetric digraph.
Moreover, if z, 2’ € V(S;), y,y' € V(S;), and 2y € E(D), we have 2y’ € E(D).

Let D’ be obtained from D by contracting every S; to a single node s;, and
sis; € E(D') if and only if there are z € V/(S;) and y € V(S;) such that zy € E(D),
1% 7.

Since r*(D) = oo, we have r™(D’) = co. Since D’ contains no oriented cycle,
there are at least two nodes in D’, say s; and ss, such that idp/(s1) = idps(s2) = 0.
Suppose that [V (D’)| > 3. Since D is maximal by r*, we have |V(D’)| = 3 and
E(Dl) = {5183, 8283}. Ol

Proposition 4.2. Let D be a digraph mazimal by r+. Then:
D is a complete symmetric digraph on at least two nodes, if r+(D) = 1;
\V(D)| > 3 and odg(z) =1 for every node x of D, if r* (D) = 2.

Proof. Suppose that »7(D) = 1. Then D contains at least two nodes, and there is
u € V(D) such that uz € E(D) for all z € V(D), x # u. Since D is maximal by
rT, D is a complete symmetric digraph.

Suppose that v (D) = 2. Clearly, |[V(D)| > 3. Since D is maximal by r* and
r+(D) = 2, for each x € V(D) there is a unique node y of D such that zy € E(D).
Thus, ody(z) =1 for every z € V(D). O

An acyclic digraph that arises from a complete bipartite graph K; ;, s > 1, by
replacing the edges by arcs (arbitrarily directed), we call an oriented star. The
following assertion characterizes the digraphs maximal by r with radii oo, 1, and 2.

Proposition 4.3. Let D be a digraph mazximal by r. Then:

D consists of two complete symmetric digraphs H, and Hy, and the arcs zy,
z € V(Hy) and y € V(Hy), if r(D) = oo;

D is a complete symmetric digraph on at least two nodes, if r(D) = 1;

the complement of D consists of a couple of oriented stars, if r(D) = 2.

Proof. Suppose that 7(D) = co. Denote by S1,S2, ..., S, the strongly-connected
components in D. Since (D) = oo, we have m > 2. Since D is maximal by r,
9



each S;, 1 < i < m, is a complete symmetric digraph. Moreover, if z,z" € V(S;),
v,y € V(S;), and zy € E(D), we have z'y’ € E(D).

Let D’ be obtained from D by contracting every S; to a single node s;, and
sis; € E(D') if and only if there are z € V/(S;) and y € V(S;) such that zy € E(D),
i # j. Clearly, D' contains a node, say s1, such that idp/(s;) = 0. Since D is
maximal by r, D’ consists of just two nodes s; and sy and the arc s;ss.

Suppose that r(D) = 1. Then D contains at least two nodes, and there is
u € V(D) such that uz,zu € E(D) for all z € V(D), x # u. Since D is maximal
by r, D is a complete symmetric digraph.

Suppose that r(D) = 2. Then for each x € V(D) there is a node y € V(D)
such that xy € E(D) or yx € E(D). Since D is maximal by r, zy € E(D) implies
that yz ¢ E(D). Moreover, either zz,zx ¢ E(D) for all z € V(D) — {z,y}, or
yz,zy ¢ E(D) for all z € V(D) — {z,y}. O

5. EXISTENCE THEOREMS

In this section we show that the classes of digraphs critical by ™, r—, r, and
also the classes of digraphs maximal by 7™, r—, and r, are large in terms of induced
subgraphs. Namely, we prove the following two theorems:

Theorem 5.1. Let D be a digraph, and let t satisfy 3 <t < co. Then there is an
infinite number of digraphs H, such that:

(1) D is an induced subgraph of H;

(2) rH(H)=r"(H)=r(H)=t;

(3) H is critical by v+, r—, and r;

(4) H is mazimal by ™, and r~.

Theorem 5.2. Let D be a digraph, and let t satisfy 3 < t < oo. Then there is
an infinite number of digraphs maximal by r with radius t, which contain D as an
induced subgraph.

In this section, by K,,, C,, is denoted a digraph that arises from a complete
graph, cycle, on n nodes by replacing the edges by pairs of opposite arcs. By x is
denoted the Cartesian product. Moreover, we use the following conditions: Let S
be a digraph and u € V(S). We say that u satisfies (*) if and only if

Vo € Ny (u) 3y € Ni (u), = # y, such that zy ¢ E(S) , (*)

and u satisfies (*') if and only if
Vz € N (u) 3y € Ny (u), = # v, such that yz ¢ E(S) . *")
For each t and m, 3 <t < oo and 1 < m < oo, we construct digraphs Hy ,, and

F; p, from D:

(1) Let a digraph D; arise from D by adding one new node u; for each u €
V(D). (Hence, |V(D1)| =2-|V(D)|.) Moreover, if idp(u) > 1 we add the
arc uuy to Dy, and if odp(u) > 1 we add the arc uyu to D;. Clearly, each
node u € V(D) satisfies (*) and (*') in D;.

10



(2) Let a digraph D, arise from D; by adding m isolated nodes, and let a
digraph Dj3 arise from D, by adding one new node w and the arcs zw and
wz, x € V(D3). Since m > 1, the node w satisfies (*) and (*') in Ds.

(3) Let Dj be a copy of D3. Denote by u' the node of D} corresponding to
the node u of D3. Let V(Dy4) = V(D3) UV(D5}), and let the arc set of Dy
consist of E(D3), E(D%), and moreover for every z,y € V(D3) we have

yx', y'z € E(Dy) < =y & E(D3) , (**)

except the case x = y, where o'z, z2’ ¢ E(Dy). It is easy to check that all
the nodes of Dy satisfy (*) and (*'). We note that a mapping ¢, such that
o(u) = v’ and p(u') = u for every u € V(Dj3), is an automorphism of Dy.

(4) Finally, let H,, = Dy, Hyp = Dy x K», and Hy , = Dy x Coy_g) if t > 5.
Note that 2(t —3) > 4 if t > 5. Clearly, all the nodes of Hy ., satisfy (*)
and (*).

(5) Let a digraph Djy arise from Dy by adding the arcs zy’, x € V(D3) and
y' € V(D3).

(6) Finally, let F37m = D5, F47m = D5 X K2, and Ft,m = D5 X Cz(t_g) if ¢ > 5.

In what follows we prove two lemmas about Hy .

Lemma 5.3. Let u € V(Hy ). Then there isv € V(Hy,y) such that dg, ,, (u,v) =
dg, ., (v,u) = t. Moreover, dy, , (u,z) < t and dy,,, (z,u) < t for every v €
V(Him), x #v.

Proof. At first suppose that t = 3. We can assume that u € V(Ds).

If x € V(D3), we have dp, (u,z) < 2, since uw, wz € E(Ds).

Let z = 2/ € V(D}), 2 # u'. Suppose that uz’ ¢ E(D4). Then zu € E(Dy)
by (**). Thus, there is y € V(D4) such that uy € E(D4) and zy ¢ E(Dy), by (*).
Thus yz' € E(D4) by (**), and hence dp, (u, z") < 2.

Analogously, using (*') instead of (*) we obtain that dp, (z,u) < 2, if z # u'.

Clearly, uu’ ¢ E(D4). If uy € E(D,), we have yu' ¢ E(D4) by (**). Thus,
dp, (u,u") = 3. Analogously, dp, (v, u) = 3.

Now suppose that ¢ > 4. Since 77(K3) = r~(K3) = r(K3) = 1 and r+(Cy) =
r=(Cy) = r(Cy) = 1, we have r*(Hy ) = v~ (Hym) = 7(Him) = t. Note that
both Ks and Cy; satisfy the lemma (each node has a unique node at the greatest
distance). Thus, also the Cartesian products Dgs X Ko and Dy x Cy satisfy the
lemma. [

Lemma 5.4. Let v € V(Hy ), and let v € V(H,,) be the unique node such
that dy, ,, (u,v) = dg, ,,(v,u) =t. Then dg, , (u,z)+dg, . (z,v) =dg,, (v,z)+
dm, . (x,v) =1 for every x € V(Hy ).

Proof. At first suppose that ¢ = 3. We can assume that u € V(D3). Then v =u' €
V(D5). If ux ¢ E(D4) and z # v/, we have zu’ € E(Dy4) by (**). Suppose that
ur € E(Dy). If dp,(z,u') > 3, we have z = u, by Lemma 5.3. Thus, dp, (u,z) +
dp,(z,u') = 3 for every x € V(D4). Analogously, dp,(v’,z) + dp, (z,u) = 3 for
every x € V(Dy).
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Now suppose that t > 4. Clearly, the Cartesian product of two digraphs, satisfy-
ing Lemma 5.4, satisfies the lemma, too. Since both K3 and Cy; satisfy Lemma 5.4,
also the H; ,, satisfies the lemma. [

Now Theorem 5.1 can be proved.

Proof of Theorem 5.1. We show that H; ,, satisfies the conditions in Theorem 5.1.
(1) Constructing the digraph H;,, we never added an arc between two nodes of
D. Hence, D is an induced subgraph of Hy .
(2) By Lemma 5.3 7+ (Hym) =7 (Hym) = r(Hym) = t.
(3) Let uw € Hyy,. By Lemma 5.3 (the first part), there is a unique node v €
V(Hy,m) such that dg, ,, (u,v) = dg, ,, (v,u) = t. Hence, we have eZLHt,m_u) (v) =
e(_Htﬂm_u)(v) =t—1, by Lemma 5.3 (the second part). Thus, H; ., is critical by r¥,
r—,and r.
(4) Let uz ¢ E(Ht,,). By Lemma 5.3 there is a unique node v € V(Hym)
such that dg, ,, (u,v) = t. Since dgm, , (u,2) + dm,,,(2,v) = t by Lemma 5.4,
we have eertm +uz)(“) < t — 1. Hence, H;,, is maximal by r*. Analogously,
e(_thmjLuz)(z) <t—1ifuz ¢ E(H;,,). Hence, H; ,,, is maximal by r~.

Since |V (Htm, )| # |V (Ht,m,)| if m1 # mg, the theorem is proved. O

The digraph F; ,, is not maximal by 7 in general, however, we have the following
lemma:

Lemma 5.5. The digraph Dy is maximal by r with radius 3.

Proof. Let w € V(D3). Then dp,(u',u) = 3, by Lemma 5.3. Suppose that
dp, (u',u) < 2. Then there is an arc zy’ € E(Ds)—E(D4) such that dp, (v, z) +
dp. (y',u) =1, a contradiction. Hence, r(D5) = 3.

Let xy € E(Ds). Then eELD5+$y) (z) < 2 and e, ,.\(y) < 2, by Lemma 5.4.
(Ds+23) () > 3. Then z € V(D3), and hence y € V(D3), too. Thus,
eE"Dermy) (y) <2, by Lemma 5.4. Thus e(p,44y)(y) < 2, and hence D5 is maximal

by 7.

Suppose that e

Now Theorem 5.2 can be proved.

Proof of Theorem 5.2. Suppose that ¢t = 3. Clearly, F3 ,, contains D as an induced
subgraph. Moreover, F3 ., is maximal by r with radius 3, by Lemma 5.5.

Now suppose that ¢ > 4. Then F} ,, is not necessarily maximal by r. However,
from each digraph H with radius ¢’ we can construct a digraph maximal by r with
radius ¢, simply by adding arcs that do not decrease the radius. Let Fy,, be a
digraph maximal by r that is constructed from F;,, by adding arcs that do not
decrease the radius.

Since r(Ds) = 3 by Lemma 5.5, we have r(F} ,) = t, and hence r(F;,,) = t.

Suppose that there is an arc xy € E(F{,,)—FE(F; ) such that z,y € V(Ds).
Since r(Ds+zy) < 2 by Lemma 5.5, we have r(F;,,+zy) < t—1 by Lemma 5.3.
Hence, D is an induced subgraph of Fj ..

Since |V (F} .., )| # |V (F}.m,)| if m1 # ma, the theorem is proved. [
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