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ABsTRACT. A graph G is two-radially maximal if G is noncomplete and for each pair
(u,v) of its nodes with distance two the addition of the new edge uv to G decreases
its radius. We prove that the central subgraph of any two-radially maximal graph
contains an edge, and we show that those of them that have a star as the central
subgraph are sequential joins of complete graphs.
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1. INTRODUCTION

The concept of radius of a graph is frequently used in graph theory. It reflects
properties that are interesting in applications and it also plays an important role in
the theory. In this paper graphs having extremal properties with respect to radius
are studied.

The terminology is based on [1]. Our graphs are undirected, without loops
and multiple edges, but they may have an infinite number of nodes. Let G be
a graph. By V(G) is denoted the node set of G. By the distance dg(u,v) or
d(u,v) of the nodes u and v we mean the length of a shortest path joining u
and v (the (u—v)-geodetic). The eccentricity eg(v) or e(v) of a node v equals to
max{d(v,u) : u € V(G)}, and the radius r(G) equals to min{e(v) : v € V(G)}. The
nodes with the minimum eccentricity are called central and they induce the center
C(G) of the graph G.

A survey on centers can be found in Buckley - Harary [1]. It is known that the
center of a tree is either K; or K,. Further, there are only seven graphs admissible
as centers for maximal outerplanar graphs [7]. Centers of chordal graphs are studied
in [6] and those of line graphs in [4] and [5]. In [5] it is shown that any connected
i-iterated line graph is a center of some i-iterated line graph for i € {0, 1,2}, which
generalizes a result of Buckley, Miller, and Slater [2]. Here we deal with centers of
graphs that possess some properties related to their radius. Moreover, we give a
condition that secures that the center of a graph contains an edge.

A graph G is radially maximal if G is noncomplete and the addition of any new
edge to G decreases its radius. In [3] it is shown that any graph can be an induced
subgraph of some regular radially maximal graph with a prescribed radius r > 3,
and hence, the class of these graphs is rich in a sense. Here we show that the result
is different if we search for radially maximal graphs with a prescribed center. Note
that the cycle Cyy is radially maximal for & > 2, and C(Cs;) = Ca2k. Hence, the
class of centers of radially maximal graphs is infinite.
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Here we slightly weaken the notion of radially maximal graphs. A graph G is
two-radially maximal if G is noncomplete and for each pair (u,v) of its nodes such
that d(u,v) = 2 we have r(G+uv) < r(G). Clearly, each radially maximal graph is
two-radially maximal. On the other hand, each noncomplete path on even number
of nodes is two-radially maximal but not radially maximal. We will prove that the
center of any two-radially maximal graph contains an edge. Moreover, we present
a class of graphs that are not the center of any two-radially maximal graph.

By the sequential join G; + G3 + -- - + G, of graphs G1,Go,...,G, we mean a
graph G such that V(G) = V(G1)UV(G2)U---UV(G,), and two nodes z € V(G;)
and y € V(G,) are adjacent, if either ¢ = j and zy is an edge of G; or |i—j| =1
(see [1, pp. 26]). Let K® be a complete graph, 1 < i < 2t and ¢t > 0. Then for each
n > 2 and «, 1 < a < n—1, the sequential join

Ki+K'+ K+ +K'+ Ko+ Kp_o+ K"+ K2 . 4+ K 1+ K,

is a two-radially maximal graph with center K,,. Main Theorem deals with other
two-radially maximal graphs with centers of radius one. We remark that if W C
V(G), then (W) denotes the subgraph of G induced by W. A node s is called
universal if it is adjacent to all other nodes, i.e. e(s) = 1.

Main Theorem. Let G be a graph.

1. Ifu and v are nodes of G such that d(u,v) = 2 and r(G+uv) < r(G), then C(G)
contains an edge.

2. Let a graph H contain a universal node, and let G be two-radially mazximal with
center consisting of H and possibly some isolated nodes. Then C(G) = H, and for
some subset W C V(H) the graphs (W) and (V(H)—W) are complete, and each
node from V(H)—W is adjacent to some node from W.

3. If G is two-radially mazimal and C(QG) is a star (i.e. a complete bipartite graph
Kis,s>1), then C(G) = K3 and

G2Ki+K'+ - +K'+Ki + K1+ K"+ + K + K, (1)

where K* are complete graphs fori=1,2,...,2t andt = r(G)—2 > 0.

If one replace ”d(u,v) = 2” with 7d(u,v) = k7, k > 3, in Part 1 then the result
does not hold. (Let G be a path on 2k+3 nodes. Let u be a neighbor of the
central node, and let v be the node of degree two such that d(u,v) = k. Then
r(G+uwv) = k < k+1 = r(G), but the center of G contains no edges.) Joining the
two nodes with the greatest distance in some graph of type (1) we obtain a new
graph of the same radius. Hence, the original graph is not radially maximal and
the following Corollary holds.

Corollary. A center of any radially maximal graph contains at least two edges.

The graph H,, in Fig. 1 is radially maximal with radius n+5, and the center of
H,, contains three edges, namely the thick ones. (By P, is denoted a path on n
nodes, n > 1.) But the following problem is still open.

Problem. Are there radially maximal graphs whose centers contain just two
edges?
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Fig. 1

Further, it can be interesting to characterize graphs that are centers of some
radially maximal graph (two-radially maximal graph).

2. PROOFS

A node y is eccentric to ¢ if d(c,y) = e(c). First we introduce a certain distance
related concept. Let ¢ be a node in a connected graph G. By nut(c) we mean the
set of nodes = in GG such that for every node y eccentric to ¢ we have

e(c) = d(c,y) = d(c, z) + d(,y) (2)

(Hence, x lies on some (c—y)-geodetic for every node y eccentric to ¢). Note that
if a node z lies in nut(c), then any node that lies on some (c—z)-geodetic lies in
nut(c), and hence the graph (nut(c)) is connected.

Lemma 1. Let x and c be two adjacent nodes in a connected graph G, c be a
central node and x € nut(c). Then z is a central node, too.

Proof. For each node y eccentric to ¢ we have d(z,y) = e(c)—d(c,z) = e(c)—1
by (2), since € nut(c). Further, for any node z not eccentric to ¢ we have
d(xz,z) < d(z,c)+d(c,z) < 14+e(c)—1 = e(c). Hence e(z) < e(c) and z is a central
node. 0

Lemma 2. Let G be a connected graph, and let u,v € V(G) such that d(u,v) = 2.
Then r(G+uv) < r(G) if and only if there is a central node ¢ such that ¢ is not an
isolated node in C(Q), {u,v} € nut(c), and |d(u,c) — d(v,c)| = 2.

Proof. First suppose that for the nodes v and v in G with d(u,v) = 2 there is a
central node ¢ such that {u,v} € nut(c) and |d(u, c)—d(v, c)| = 2. Then r(G+uv) <
eG+uv(€) = eg(c)—1 = r(G)—1, and hence r(G+uv) < 7(G).

Now assume 7(G+uv) < r(G) for the nodes u and v with d(u,v) = 2. Then
we have r(G+uv) = r(G) — 1. Since egiuv(z) € {ea(z)—1,eq(z)} for any z €
V(G), C(G+uw) is a subgraph of C(G). Let ¢ € V(C(G+uv)) C V(C(G)). Since
eca+uv(€) < eg(c), we have 2 < |dg(c,v) — dg(c,u)| < d(u,v) = 2, say dg(c,v) —
dg(c,u) = 2. Let y be any node eccentric to ¢ in G, and let P be a (c—y)-geodetic
in G+uv. Clearly, P contains the edge uv, since dgiuv(¢,y) < egiuv(c) < eg(c) =
da(c,y). Let z € V(G) such that zu,zv € E(G). Now if the edge uv in P is
replaced by the path uzv, we obtain a (u—wv)-geodetic in G that contains u and v.
Hence {u,v} € nut(c).

Finally, since nut(c) # {c} and nut(c) induces a connected subgraph, there is
y € nut(c) that is adjacent to ¢ in G. By Lemma 1 y € V(C(G)), and hence c is
not an isolated node in C(G). O



Lemma 3. Let s be a universal node in a graph H, and let G be a two-radially
mazimal graph with center consisting of H and possibly some isolated nodes. Then
for any two nodes u,v € V(G)—V (H) we have

du,v) =2 = |d(s,u) —d(s,v)| = 2. (3)

Further, for any node w with d(s,w) = 2, the nodes of H adjacent to w induce a
complete graph.

Proof. Let u,v € V(G)-V(H) and d(u,v) = 2. By Lemma 2 there is a node
¢ € V(C(G)) nonisolated in C(G), hence ¢ € V(H), such that |d(c, u) —d(c,v)| = 2,
say

d(c,u) —d(c,v) = 2. (4)

If ¢ = s then (3) holds. Let ¢ # s. If s lies on some (c—v)-geodetic, and hence on
some (c—u)-geodetic, we have d(c,v) = d(c, s)+d(s,v) and d(c, u) = d(c, s)+d(s,u).
Now (4) implies (3).

We have u,v ¢ V(H), and hence ¢ # v. Assume s does not lie on any (c—v)-
geodetic, and let P = ca...v (maybe a = v) be some (c—v)-geodetic. Since v €
nut(c) we have a € nut(c), and Lemma 1 yields a € V(C(G)). Hence a € V(H) and
s is adjacent to both ¢ and a. Now we prove d(s,v) = d(c,v) and d(s,u) = d(c, u),
which will imply (3). We prove only d(s,v) = d(c, v), since the proof of the second
equality is very similar.

We have d(s,v) > d(c,v) since d(c, v) < d(c, s)+d(s,v) = 1+d(s,v). On the other
hand, d(s,v) < d(s,a)+d(a,v) = 14+d(c,v)—1 = d(c,v), and hence d(s,v) = d(c, v).
Hence (3) is proved.

Now we prove that for any node w with d(s,w) = 2, the nodes adjacent to w in
H induce a complete graph. Assume to the contrary that there are two nonadjacent
nodes p,q € V(H), both adjacent to w. Then d(p, q) = 2, and Lemma 2 yields that
there is a central node ¢ € V(H) such that |d(c,p) — d(c, ¢)| = 2 and p, ¢ € nut(c).
Since max{d(c,p),d(c,q)} < d(H) < 2, we have ¢ € {p, ¢}, say ¢ = p. (We remark
that by d(H) is denoted the diameter of H.) Then ¢ € nut(p), and since w lies on a
(p—q)-geodetic w € nut(p). By Lemma 1 we have w € V(C(G)), which contradicts
d(s,w)=2. O

Proof of Main Theorem. Part 1 is implied by Lemma 2.

Part 2. Let G be two-radially maximal, and let C(G) consist of a graph H
(with a universal node s) and possibly some isolated nodes. Denote N;(G) = {w €
V(G)-V(H) : d(s,w) = i}, i« > 0. The graphs (V;(G) U N;11(G)) are unions of
complete graphs, since they do not contain nodes with distance two, by (3). Now we
construct a graph F', whose nodes are those of H together with cliques of (V;(G)),
1 > 1. Two nodes of F' are adjacent if and only if the corresponding nodes or cliques
of G are adjacent by an edge. Using (3) one can verify that if two cliques, say Fy
and Fy, are adjacent, then for every z € V(F}) and z € V(Fy), the x and z are
adjacent in G. Since G is noncomplete, we have C(F) = C(G). Moreover, F is
two-radially maximal, since joining two nodes with distance two in F' by an edge
corresponds to joining at least two nodes with distance two in G.

Further, note that (N;(F) U N;+1(F)) (¢ > 0) is a collection of isolated edges
and nodes. Hence (V(F)—V(H)) is the union of paths. We remark that N;(F')
contains at most one node, by (3).
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Let y be a node eccentric to s and let saw...y be an (s—y)-geodetic. Let
W be the set of nodes from V(H) adjacent to w. Then (W) is complete by
Lemma 3. In what follows we prove that (V(H)—W) is complete and each node
g € V(C(G))—W is adjacent to some node of W. The w lies on each (g—y)-geodetic,
since (V(F)—V(H)) is the union of paths. Thus, d(g,y) = d(g9,w) + d(w,y) =
d(g,w)+7r(G) —2 < r(G), and since d(g,w) > 2, we have d(g,w) = 2. Let t be the
common neighbor of g and w. Then either t € W or ¢t € N;(F'), according to the
structure of F' and hence G. We show that we can assume that t € W.

Suppose that t € N;(F'), and distinguish two cases:

Case 1. Let w € nut(s). Then stw is a (s—w)-geodetic, and hence t € nut(s).
Thus t € C(F) = C(G) by Lemma 1, a contradiction.

Case 2. Let w ¢ nut(s). Then there exists a node y’ # y, such that d(s,y’) =
r(G) and w does not lie on any (s—y’)-geodetic. Let w’ be the node of Na(F)
which lies on some (s—y’)-geodetic. Then w’ # w and w and w’ are nonadjacent
(it follows from the definition of F'). Note that ¢t and w’ are not adjacent, since
otherwise d(w,w’) = 2 and (3) yields |d(s,w) — d(s,w")| = 2, a contradiction. Now
we can interchange w with w’ and y with y’, and we have t € W, since Ny(F)
contains at most one node as mentioned above.

Thus, each node g € V(C(G)) — W is adjacent to some node of W, and hence
C(G)=H.

Finally, we prove that (V(H)—W) is complete. Assume to the contrary that
there are two nonadjacent nodes u and v in (V(H)—W). Then d(u,v) = 2, and we
have |d(c,u) — d(c,v)| = 2 for some ¢ € V(H), by Lemma 2. Since d(H) < 2, we
have ¢ € {u,v}, say ¢ = u. Then v € nut(u). Since y is eccentric to both u and v,
we have 7(F) = dp(u,y) = dp(u,v) + drp(v,y) = 2+ r(F), a contradiction. Hence,
the graph (V(H)—W) is complete.

Part 3. Let H be a star. Then H contains a universal node, and hence C(G) =
Ky = C(F) by Part 2. (In the case C(G) = K1 2 we have s € V(H)—W, and hence
W counsists of one node. Thus, there is a node from V(H)—W not adjacent to some
node from W.) It is easy to verify that F' is a path, and hence, G is the sequential
join of complete graphs. Clearly, the first one and the last one are K1, since G is
two-radially maximal. [
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