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ABsTRACT. For a connected graph G that is not a cycle, a path or a claw, let its
k-iterated line graph have the diameter diamy and the radius ry. Then diamgy1 =
diamy + 1 for sufficiently large k. Moreover, {ry} also tends to infinity and the

sequence {diamyg — rp, — 1/2logs k} is bounded.
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1. INTRODUCTION

In this paper we study distance properties of iterated line graphs. If G is a
nontrivial graph then by its line graph L(G) we mean such a graph whose nodes are
the edges of G and two nodes in L(G) are adjacent if and only if the corresponding
edges are adjacent in G. Further by L we mean the line graph function, i.e. the
function which maps each nontrivial graph into its line graph. Later on L is the
identical graph function, while L* is the composition L*¥~1 o L for an integer k > 1.

Many papers have been written on line graphs [1] but only a few results are
known about iterated line graphs [3]. The aim of this paper is to initiate the study
of distance properties of iterated line graphs. Particularly, we focus our attention
on sequences of graphs, in which any member but the first is the line graph of the
preceding one. First we describe two types of them.

Note that the k-iterated line graph of a path on n nodes is the path on n—k
nodes for k<n and such a graph does not exist if k>n. Moreover, each iterated line
graph of a cycle is isomorphic to the original cycle and each iterated line graph of
K, 3 is a triangle. Hence it suffices to study connected graphs with at least four
edges and the maximal degree at least three. Such graphs G will be called prolific,
since each two members of the sequence {L¥(G)} are distinct.

For a function f on graphs we create a sequence fy, := f(L¥(G)), or shortly an
f-sequence and study its behavior. We do this for the order n, the diameter diam
and the radius r of a graph. Main results are presented in Chapter two and their
proofs are postponed to Chapter three.
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2.RESULTS

Let G be a graph, then ny = n(G) denotes the number of its nodes, m(G)
denotes the number of its edges and Jp = 6(G) and Ay = A(G) correspond to its
minimal and maximal degree. We will pay no attention to the m-sequence, since
the equation my, = ngy1 relates it to the n-sequence. We will show that Ap=0(2%),
Sk=0(2F), nk:@(2k2+3k), diamy=0(k), and diamy,—r=0(VIn k) are bounded for
prolific graphs. The following LLemma gives bounds for these invariants in iterated
line graphs.

Lemma 1. For a prolific graph and k>1 we have

(1) 2k (60—2) +2 < 6 < Ap <28 - (Ap—2) +2
k—1 ‘ k—1 .

(2) no- [[1271 (60—2) + 1] < mk < mo - (257 (Ao—2) + 1]
1=0 =0

Moreover, equalities hold for reqular prolific graphs.

Better lower bounds for graphs with endnodes are given by the next theorem.

Theorem 2. For a prolific graph G and k>5 we have

k—5

(3) ne >8- [[ (2" +1)
1=0

(4) Ap >3-2F* 12

Moreover, if G = J (see Fig.1) then the equality in (4) holds.

L@

J L(J) LA(J)
Fig.1.

It was shown in [2], that |ri1—r¢| < 1 and |diamq—diamg| < 1 for a nontrivial
connected graph. Here we prove that the sequence {diamy} increases for sufficiently
large k.

Theorem 3. Let G be a prolific graph. Then
(5) diamy41 = diamy, + 1 for k> 3+ns.

Moreover, if G is a noncomplete graph with 6(G) > 3, then

(6) diamg +p — 2 < diam, < diamo +p for any p>1.
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Note that the left equality in (6) holds if G is an N-dimensional cube for N>3
and p>2, the right equality holds for complete graphs with at least six nodes, and
diam, = diamo+p—1 holds for K,,—e and n>6. It could be of some interest, for a
given graph G, to find a smallest number kg such that diamy increases for k>ky.
The bounds given in Theorem 3 are rather far from this value.

Theorem 4. For a prolific graph there are numbers c¢; and co such that
v/ 21ogs k + 1 < diamy — 1, < \/2logy k + co.

We conclude this section with several open problems.

Conjecture 1. There exists k>0 such that for any two prolific graphs G and H,
n(LY(H)) = n(LY(G)) fori=0,...,k implies n(L*(H)) = n(L*(Q)) for all i.

Conjecture 2. There exists k>0 such that for any two prolific graphs G and H,
n(LY(H)) < n(LY(G)) fori=0,...,k implies n(L*(H)) < n(L*(Q)) for all i.

Conjecture 3. Given a prolific graph, we have 0x4+1 = 205—2 and Agy1 = 2A,—2
for sufficiently large k.

Note that Lemma 1 gives an exact value of ny for a regular graph G. For a given
graph G, n(L(QG)) equals to the number of edges in G, while n(L?(G)) = 3 (de%(”)),
where deg(v) denote the degree of v in G and the summation goes over all nodes v
of G. But to compute n(L*¥(G)) in general seems to be an uneasy task unless G is
regular.

The problems of the complexity of ng, dr, Ax, diamyg, r for a prolific graph
remain open.

3. PROOFS

We will identify edges in a graph G with the corresponding nodes in L(G). Hence
if u and v are two adjacent nodes in G then by uv we mean an edge in G as well
as the node in L(G) corresponding to the edge uv. This notation enables us to
consider a node in L¥(G) (k>2) as a pair of adjacent nodes in L¥~1(G), either of
these is a pair of adjacent nodes from L¥~2(G), and so on. Furthermore we can
define each node in L*(G) using only edges of G, and such a definition will be called
the recursive definition of v in G.

Proof of Lemma 1. Let G be a prolific graph. Note that if e=ab is an edge in G
then deg(e) = deg(a)+deg(b)—2, hence Ag < 2-Ap_1—2 and 0 > 2 d_1—2 (for
k>1), which gives (1). Further as nodes in L*¥(G) are edges in L*~1(G), we have
ng < % < [2872. (A¢p—2) + 1] - ng_; from (1) and this recurrent relation
gives the right inequality in (2). The proof of the left one is very similar. O

Let H be a nontrivial subgraph of G. By L(H,G) we mean just the subgraph
of L(G) induced by nodes that are edges of H. Clearly L(H,G) = L(H). Later on
L'(H,G) = L(H,G) and L*(H,G) means L*~'(L(H,G), L(G®)).
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Proof of Theorem 2. 1t is easy to see that G contains either J or L(J) (see Fig.1)
or K 4 as a subgraph. Put H = L*(J) and note that n(H)=8 and §(H)=4. Then
(2) gives

k—5
n(LF(J)) = n(LF*(H)) > 8 - H(2i+1).

Moreover, A(H)=5 and the four nodes of the degree five lie on a cycle C' (see
Fig.1). Then LP(C,H) is also a 4-cycle for any p. It is easy to check that for
nodes v, of LP(C, H) we have deg(vp41, LPT'(H)) = 2 - deg(vp, LP(H)) — 2, where
deg(v, G) means the degree of v in a graph G. This recurrent relation together with
(1) gives

A(L*(J)) = A(LF*(H)) =3 -2k + 2.

Now if G contains J then (3) and (4) follow as L*(G) contains L*(J). Further if
G contains L(J), then L¥(G) contains L¥+1(.J) and (3) and (4) also follow. Finally,
if G contains K 4, then as L(J) C L(K; 4) = Ky, the graph L(G) contains L(J),
the result follows. [J

Let G be a graph and v be a node in L¥(G), (k>1). By the i-butt B;(v) of the
node v in L*¥(G) we mean the subgraph of L¥~*(G) induced by the edges involved
into the recursive definition of the node v. The butt we will abbreviate to B(v)
when it is clear in which graph it is considered.

As LF(H,G) contains just those nodes of L¥(G) whose recursive definition con-
tains edges of H and only such edges, for any nontrivial graph H C G we have

(7) A node v of L*(G) lies in L*(H,G) if and only if By(v) C H.

By Px we mean a path on k edges. If H and J are two subgraphs of a graph
G, then by H V J we mean the edge-union of H and J. Symbols V(G) and E(G)
denote the node set and the edge set of a graph G, respectively.

Lemma 5. Let H be a subgraph of a graph G and L*(G) exist (k>1). Then H is
a butt for some node in L*(Q) if and only if H is a connected graph with at most
k edges, distinct from any path with less than k edges.

Proof. First assume H = By (v) for some node v of L¥(G). We prove that By (v) is
a connected graph with at most k edges distinct from paths on at most k& nodes by
induction on k. This clearly holds for k=1,2, as each 1-butt is an edge and each
2-butt is a path Py. For k>2 suppose that the inductive hypothesis holds for values
less than k. First we prove that By (v) is connected. Note that v=(zy)(yz) for some
nodes z,y, z of L*"2(G@). Moreover, By(v) is the edge-union By_1(zy) V Bg_1(yz)
and both these butts are connected and contain a common subgraph By_s(y), hence
the butt Bg(v) is connected.

Further as By_1(v) is connected and has at most k—1 edges, it contains at most
k nodes. Since V (By_1(v)) = E(Bk(v)), Bi(v) contains at most k edges.

Finally, for H = By(v), (7) gives that v lies in L¥(Bg(v), G), hence By (v) cannot,
be a path P, with t<k, as the graph L*(P;, G) does not exist.

Conversely, let H be a graph that satisfies the hypothesis of Lemma 5. We
prove by the induction on k that H is a butt for some node in L*¥(G). Clearly this
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holds for k=1. Assume k£>2 and let the statement hold for numbers less than k.
Distinguish three cases.

(i) Let H be a path on k edges. Let v be a node of L¥(H,G). (Remember,
that L*¥(H,G) = L*(H).) Then By(v) = H follows from (7) and the first part of
this proof.

(i) Let H be a claw or a cycle of length [ < k. Since the i-iterated line graph
of a claw is isomorphic to the i-iterated line graph of a triangle for 7 > 1, it suffices
to study the case when H is a cycle. It is clear that L‘(H,G) is a cycle with [
nodes for any i > 0. Put L*!/(H,G) = H' and represent this cycle as an edge-
union Pj_, V P/ ; with P,y NP/ ; = P,_5. Denote u = L'=Y(P_1, L*YG)) and
u' = LY(P)_ [, L*Y(G)). Then u and v’ are adjacent nodes in L¥~1(G) and form
a 1-butt of a node v € L*¥(G). Thus, H = By(v).

(iii) Let T denote a spanning tree in a connected graph L(H, G) and T do not be
a path. Such a tree exists, because L(H, G) has a node of degree greater than two.
Then T has at most k—1 edges, as n(T)=m(H)<k. Now according to the induction
hypothesis, T is a (k—1)-butt for some node u of L¥"1(L(G)). Since E(Bg(u))=
V(Bgk-1(u))=V(T)=E(H), the k-butt By(u) is edge-induced by E(H) and H =

The distance d(H,J) between two subgraphs H and J of a graph G equals to
the length of a shortest path in G joining a node from H to a node from J. The
following lemma enables us to compute distances between nodes in iterated line
graphs.

Lemma 6. Let G be a connected graph, L*(G) exist for an integer k>1, and let u
and v be distinct nodes in L*(G). Then
(S1) d(u,v) =k + d(Bg(u), Bg(v)) if the k-butts of v and u are edge-disjoint.
(S2) d(u,v) = max{t;t-butts of u and v are edge-disjoint} if k-butts of u and v
have a common edge.

Proof. First we prove (S1) by the induction on k. It is not difficult to check up
that if u and v are two distinct edges in G (i.e. the nodes in L(G)), then

®) dr(e (. v) = 1+ d (B1 (u), By(v))

This verifies (S1) for k=1. Now let (S1) hold for integers less than k£ and assume
that u=ujuy and v=v v, are distinct nodes in L*¥(G) with edge-disjoint butts in
G. Then (8) gives

(9) dpk(a) (urtz, v1v2) = 1+ min (dpr—1 (@) (ui, v5)| 4,5 € {1,2})

as ujug is the only edge in the butt By (u) and vyvs is the only edge in By (v). Since
By (u) and By (v) are edge-disjoint and Bj_1(u;) € Bg(u) and Bi_1(v;) C Bg(v)
for ¢ € {1,2}, also By_1(u;) and Bji_1(v;) are edge-disjoint for ¢, 5 € {1,2}. Hence
the induction hypothesis gives

dpr-1(g) (Ui, v;) = (k=1) + d (Be—1(us), Be—1(v;))

and after substituting to (9) we have dpk(u,v) = 1 + (k—1)+
d (Bi—1(u1) V Bg—1(u2), Bg—1(v1) V Bk—1(v2)). Now the observations By (u) = Bg—1(u1)V}j
By_1(ug) and By (v) = Bg—1(v1) V Bi—1(va) complete the proof of (S1).



6 L. NIEPEL M. KNOR L. SOLTES

In order to prove (S2) assume that ¢ is maximal integer such that the ¢-butts of u
and v in L*7*(G) are edge-disjoint (t<k as B (u) and By (v) have a common edge).
Then the (t+1)-butts of v and v in L¥~t71(G) have a common edge e, which is
also a node in L*~*(@). Finally, statement (S1) reduces the problem on computing
distances in L¥=4(Q), d(u,v) = k — (k—t) + d (B¢(u), B¢(v)) = t as both butts in
question contain the node e. [J

Proof of Theorem 3. By Ap,(G) we mean the maximal distance between any two
p-butts in a prolific graph G.

(10) If p>1 and G contains two edge-disjoint  p-butts, then

diam(LP(G)) = p+Xp(G).

Proof of (10): Lemma 6 implies that for any p>1, two nodes in LP(G) with edge-
disjoint p-butts have the distance at least p, while two nodes whose p-butts possess
a common edge have the distance less than p. Hence in computing the diameter
of LP(G) we can restrict ourselves to pairs of nodes with edge-disjoint p-butts, and
(S1) gives (10).

Now we prove (6): As §(G)>3 and G is noncomplete, any claws Wy and Wj in
G, whose central nodes have the distance diam(G), are edge-disjoint p-butts (for
any p>3) according to Lemma 5. Evidently, diam(G)—2 < d(W1, W3) < Ap(G) <
diam(G). If p=1 or 2, we take appropriate subgraphs of these claws.

Now we show that H = L3(G) contains two edge-disjoint p-butts for any p>1 and
any prolific G. Since G contains either J (see Fig.1) or L(J) or K1 4 as a subgraph,
the graph L3(G) contains L3(J) or L*(J) or L3(K1,4) = L?(K4) as a subgraph and
one can directly verify that each of them contains two edge-disjoint claws. Clearly
a claw is a p-butt for p>3. If p=1 or 2, we take appropriate subgraphs of these
claws and obtain edge-disjoint p-butts.

Now, according to Lemma 6, A,(H) = diam,—p is a constant function for all p,
p>n(H), as the sets of minimal p-butts remain the same. Since H = L3(G), (10)
completes the proof. [

Lemma 7. For a prolific graph and t > 2ry, we have 6; > 3.

Proof. Let H(G) be the subgraph of a prolific graph G induced by the nodes with
the degree at most two. Then H(G) consist of paths with at most 2ry nodes. Since
H(L(G)) = L(H(G)), H(L**(G)) is empty and s, > 3. [

Proof of Theorem 4. Due to Lemma 7 and Lemma 1 we can suppose that 6(G) > 4.
In this case for the sequences {n;}, {m;} holds the next inequality which is sharp
for: >0
(11) ni+1:mi22ni, iZO,l,....

For the given graph G we shall consider the sequence

w; = diam; — 14

and try to estimate it for sufficiently large n.
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Let s be the minimal number with the property that there exists vy € V(L*° (G))

such that E(Byo(vo)) N E(By(v)) # 0 for all v € V(L**(G)). The existence of °
follows from Lemma 5. The complement of By (vg) in G' does not contain s%-butt

of any node v € V(L* (G)) so it should be a forest with path components of length
less then s°. Thus, we obtain

(12) mo > s° > |E(Byo(vo))| > mo — no -

Now we show that |E(Bgo(vg))| = s°. According the inequalities (11) and (12)
the complement of Byo(vg) in G has less then s°—1 edges and it cannot contain
(s°—1)-butt of any node. Now suppose that |E(Bs(vg))| < s°. In this case
Byo(vg) is also an (s°—1)-butt of a node v}, € V(Lyw_1(G)) with the property
E(Byo_1(v}h)) N E(Bgo_1(v)) # 0 for any v € V(L*'~1(G)) what is a contradiction
with the minimality of s°.

We show that vy is a central node of L (G). Suppose that w is a node from
L*°(G) with eccentricity less then s°—1. Then E(Byo_1(w)) N E(Bgo_1(v)) # 0 for
all v € V(L**(G)) from (S2) and my > s°—1 > my —ny > mg from (11) which is a
contradiction with (12). Since the eccentricity of vg is s°—1, we have r,o = s%—1.

Now let k& > s°. For the radius 73 of L¥(G) we have rp_1 — 1 < rp < rp_1 + 1,
Theorem 3 from [2]. Let s' be the minimal number s' > s® with 7,1 <7, _;. Then
ry < 8'—2 and there exists a node v; € V(LSI(G)) with property E(Bgi_1(v1))N
E(Bgi_1(v)) # 0 for any v € V(L* (G)). From the minimality of s we obtain

mi>st—1>m; —n
|E(Bgi_1(v1))| = st—1

in the same way as above. Since ms —ny > my from (11), we have ;1 = r,1 1 and
rs1 = s'—2. Thus,

75044 =5+

Wg0 44 =Wg0

for all nonnegative 7 < s — s0.

Analogously, let s/ be the least number with a property that there exists vj €
V(L* (G)) such that E(B,i_;(vj)) N E(Bg_;(v)) # 0 for any v € V(L* (G)). By
the same method as above we have

m; >87 —j>m; —n;

Tsi = Sj - (.7+1)
and for nonnegative 7 < s7 — s7~1
Tgi-14; =S —J+.
From Theorem 3 it follows that there exists ko = s/ with the property

diamy = diamp_1 + 1
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for any k£ > ko. On the other hand
Tk =Tg—1+1

for all k > s® except for k = s?. Thus, {wg} is a constant function on all intervals
[s7,89%1 — 1] and in s/ it increases by one for j > jo.

In the following we estimate the values of w in k = s7, j > jo. If wyio = ¢+ Jo
then w,; = c+ j for 5 > jo.

Now we bound the value of s7. Using (11) and Lemma 1 we have

mj—annj>2(g)-n0.

Let | = [logy(Ag—1)]. Then we have

J .
my = nje1 < no- [ | [271(20=2) + 1] <202) . ng .
i=0
Putting together the above inequalities we obtain

2(jJ2rl)-n0>mjZsj—j>mj—nj>2(g)-n0.

Since 202" “ng > 2(’") ‘ng+j and w,; = c+ 7, for k = s7 and j > jo, we have
2(w(k)—20+l+1) g > k > 2(w(ls:2)—c)  ng

for k = s7 and j > jo. Using 42 > y(y—1) > (y—1)2 after a short computing we

obtain

V2logy k —2logang +c—1—1 < wy, < y/2logy k —2logyng + ¢+ 1

thus,
V2logy k +c1 <wg < 4/2logy k + c2

for some constants ¢; and ¢y that does not depend on k. Now let k£ be an arbitrary
integer greater than or equal to s7°. Since {wy} is a constant function on all intervals
[s7,57%1 — 1] and in s’ it increases by one for j > jo,

V2l0ogok+c1 — 1 <wg <+/2logy k +ca

for all £ > s’°. Now changing the constants completes the proof. [
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