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ABSTRACT. For every graph H without isolated nodes there exists a graph &
such that H is the center of G and the line graph of H is the center of the line
graph of G. Graphs which are the periphery of some line graph are characterized
and other distance related concepts in line graphs are studied.

- Intrnducfion and basic results

Suppose an official has to find a suitable place for an emergency facility
(such as a fire station) in a given traffic network. It is naturally to locate it in
such a way that the distance to the furthest node will be as short as possible,
hence to build the fire station in the center of the corresponding graph. This
is one reason for which centers in graphs have been studied in many papers.
It is known [2, p. 41] that for each graph H there is a graph G having the
center H and containing at most four noncentral nodes, The minimum number
of noncentral nodes A(H) among graphs having the center H was found by
Buckley, Miller and Slater [3] in the case H is a tree. Some graphs
H with A(H) = 3 were presented byBielak [IJand Chen [4]. Buckley,
Miller and Slater [3] have also shown that for each graph H with n>9
nodes and an integer & > n 41 there exists a k-regular graph G having the
center H. So far little is known about centers of special graphs. Clearly the
center of a tree consists of either a single node or a pair of adjacent nodes. All
seven central subgraphs admissible in maximal outerplanar graphs were listed
by Proskurowski (10]. The greatest contains six nodes. Laskar and
Shier [8] studied centers in chordal graphs. The center in the cartesian product
[2, p. 23] of two graphs equals the product of their centers (Nieminen [9]).
Spanning subgraphs with a prescribed central node were studied byCheston,
Farley, Hedetniemi and Proskurowski [5]. They suggested an
O(m,n) algorithm which for every node v in a biconnected graph G with n

AMS Subject Classification (1991): Primary 05C99.
Key words: Connected graph, Center of a graph, Line graph.

11




MARTIN KNOR — LUDOVIT NIEPEL — LUBOMIR SOLTES

nodes and m edges produces a spanning tree T such that v is a central node
in T. A good survey on centers can be found in the book [2].

In this paper we focus our attention on centers in line graphs. In general,
our terminology is consistent with general usage, such as in Buckley and
Harary [2]. If a graph posseses no edges, then it is said to be a trivial graph.
Let G be a connected graph, v be its node and f be its edge. Then the ec-
centricity ec(v) or e(v) of v is the distance to a node furthest from v. The
eccentricity ec(f) or e(f) of the edge f equals the eccentricity erc)(f) of
the node f in the line graph of G. The radius (@) is the minimal eccentricity
of the nodes, whereas the diameter d(G) is their maximal eccentricity. Further,
v is a central node if e(v) = r(G) and the center C(G) of G is the subgraph
induced by all central nodes, while the periphery Per(G) of G is the subgraph
induced by the nodes with the greatest eccentricity.

The connections in distance properties of a graph and its line graph are
investigated in this paper. Relations between the eccentricity of an edge and
the eccentricity of its endnodes are provided. We prove that for every graph H
- without isolated nodes there is a graph G such that H is the center of G and
the line graph of H is the center of the line graph of G. If the line graph of
a graph H has the radius at least three, then the similar result holds for the
periphery instead of the center. Two conjectures on centers are presented.

We start our investigation with several observations on distances. By dg(z,y)
or d(z,y) we mean the distance between the nodes z and y in a graph G. Let
e = ab and f = uv be two edges in a connected graph G. Then for their
distance in the line graph of G we have dpg)(e, f) =0 if e= f and

dL(G) (aba "U) =1+ mm{d(a, u')l d(ﬂ, U),d(b, u): d(b’ t})} (1)

otherwise. Further, for an integer k and two nodes x and y in G, we mean by
Si(x,y) the subgraph in G induced by the nodes which have the distance from
both z and y at least k. Now we can express the eccentricity in a line graph
in the following way:

OBSERVATION 1. Let u and v be adjacent nodes in a connected graph G
with at least three nodes. Then the eccentricity of the node uv in L(G) equals
the mazimal k > 0 such that the subgraph Si—_1(u,v) contains an edge.

A node is eccentric to a node v if their distance equals e(v). The next
Lemma provides relations between the eccentricity of an edge and that of its
endnodes.

LEMMA 2. Let u and v be adjacent nodes in a connected graph G . Then
lerie)(ur) —eg(v)| < 1 holds. Moreover, if u and v have distinct eccentricities,
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then |e(u) — e(v)] = 1 holds and the eccentricity of the edge uv equals the
eccentricity of one its endnodes.

Proof. Notethat |e(u)—e(v)| €1 as u and v are adjacent. Now it suffices
to prove that |eg,(q)(uv) —eg(v)| <1 holds. If G has two nodes, then G is K
and Lemma 2 holds. From now on assume that G has at least two edges. Then
there exists an edge distinct from wv and due to (1) we have e(uv) <1 +e(v).
Further, we verify that e(uv) > e(v) — 1 holds. Let a be a node eccentric to
» and distinct from u, b be a neighbour of a. Then the distance between any
node from {u,v} and any node from {a,b} is at least e(v) — 2, since otherwise
there will be a v — @ path with the length shorter than e(v). As uv # ab,
according to (1) we have e(uv) > d(uv,ab) = 1+ e(v)—2=e(v)—1. m}

A connected graph is selfcentered, if C(G) = G holds. Now some conse-
quences for the radius and the center in a line graph follow.

THEOREM 3. For a connected graph G with at least three nodes we have:

(1) : |r(L(@)) — r(G)| < 1, moreover, r(L(G)) = r(G) + 1, if and only if
for each two adjacent central nodes © and y there is an edge f such that both
endnodes of f are eccentric to both = and y. Further, r(L(@) =r(G) -1 if
and only if for each edge f joining central nodes and each other edge g at least
one endnode of f has the distance at most 7(G) — 2 to some endnode of the
edge g .

(2) : If G has a nontrivial center and a greater radius than its line graph,
then C(L(G)) is an induced subgraph in L(C(@)) . Moreover, if L(G) is self-
centered, then also G is selfcentered.

(3) : If G has a nontrivial center and a smaller radius than its line graph,
then L(C(G)) is an induced subgraph in C(L(G)) . Moreover, if G is selfcen-
tered, then L(G) is selfcentered, and L(C(G)) = C(L(G)) if and only if G is
selfeentered.

Proof. Part (1) follows directly from Lemma 2 and Observation 1. As-
sume G has the radius K.

(2) : Let 7(L(G)) = R—1. Then for a node uv in C(L(G)) we have e(u) =
R and e(v) > R, Lemma 2 gives e(v) = e(u) = R, hence wv is in Lc(@).
Moreover, if L(G) is selfcentered, then C(L(G)) = L(G) is an induced subgraph
in L(C(G)), so G is a subgraph in C(G) and G is selfcentered.

(3): Let r(L(G)) = R+ 1. Then, for a node uv in L(C(G)), we have
e(u) = e(v) = R, which gives e(uv) < R+1= r(L(G)) and that is why uv is
in C(L(G)) . Moreover, if G is selfcentered, then L(G) is an induced subgraph
in C(L(G)), hence L(G) is selfcentered. Further, if G is selfcentered, then
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we have L(C(G)) = L(G) = C(L(G')) - On the other hand, suppose that G
is not selfcentered. Then it contains an edge cy joining a central node ctoa
noncentral node y, hence e(c) = R and e(y) = R+ 1. Then elcy) < R+1
due to Lemma 2 and cy is in L(C(@)) . Hence C(L(G)) = L(C(G)) does not
hold. (]

Theorem 4 provides results on the periphery similar to those on centers.

THEOREM 4. For a connected graph G with at least three nodes we have:

(1) : |d(L(@)) - d(G)| < 1.

(2): If G has a nontrivial periphery and a greater diameter than its line
graph, then L(Per(G)) is an induced subgraph in Per(L(G)) . Moreover, if G is
selfcentered, then L(G) is also selfcentered and L(Per(G)) = Per(L(G)) holds
if and only if G is selfcentered,

() : If G has a nontrivial periphery and a smaller diameter than its line

graph, then Per(L(G)) is an induced subgraph in L(Per{G)) - Morsover, if L(@)
is selfcentered, then G is also selfcentered.

Proof. The part (1) follows directly from Lemma 2.

Denote by D the diameter of @,

(2): Let d(L(G)) = D ~1. For a node u from L(Per(G)) we have e(u) =
e(v) = D, 50 e(wv) > D—1 = d(L(G)), which gives uv is in Per(L(G)).
Further, if G is selfcentered, then Per(G) = G and L(Per(G)) = L(G) is an
induced subgraph in Per(L(G)), hence L(G) = Per(L(G)), which means L(G)
is selfcentered.

If G is selfcentered, then L(G) is also selfcentered, and clearly, L(Per(G)) =
Per(L(G)) holds. On the other hand, if G is not selfcentered, then there js an
edge py such that e(p) = D and e(y) = D1, clearly, py is not in L(Per(@)).
Then, due to Lemma 2, we have e(py) > D -1 = d(L(G)), hence py is in
Per(L(G)), so L(Per(G)) = Pér(L(G)) does not hold.

(3): Let d(L(G)) = D+1. For a node uv from Per(L(G)) we have e(uv) =
D+1,s0 e(u) > D and e(v) 2 D and u and v are in Per(G). Hence uv is
in L(Per(G)). Moreover, if L(G) is selfcentered, then L(G) = Per(@) and so
G is a subgraph in Per(G), so G is selfcentered. 0

2. Line graphs with a prescribed center
At first we show that each line graph can be a center of some line graph.
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THEOREM 5. Let H be a graph with n nodes and m > 1 edges. Then there
is a connected graph G with at most 4n nodes and at most m+n(n+1) edges
such that L(H) is the center of L(G).

Proof. Let V(H) = {v1,...,va} be the node-set of H. Now we will con-
struct its supergraph G as follows. Its node-set will be the set {vi, zi, ¥i, zi |
i=1,...,n}. Further the edge set consists of the edges of H together with the
edges joining z; to each node from V(H) — {v;}, the edges z;y; and y;2; for
alli=1,...,n (see Fig. 1 for H = P;).

Figure 1. The line graph of the drawn graph has L(Ps;) as its center.

Clearly, each edge joining two central nodes has the eccentricity three, while
for any other edge f let say v; be a central node which is nearest to f. Then
its distance to y;2; is at least four. Hence C(L(G')) = L(H) holds. i}

CONJECTURE 6. For a line graph F with n nodes and each integer k > n+1,
there is a k-regular line graph with the center F .

Simic [11] has characterized graphs G, for which the line graph transfor-
mation L and the mapping K which maps a graph on its clique graph commute,
ie. L(K(@)) = K(L(G)) holds. Now we shall study a similar class of graphs,
particularly connected graphs with a nontrivial center for which the mappings
L and C commute, hence L(C(G)) = C(L(G)). This is in a sense, accord-
ing to Theorem 3, an extremal property. Denote Ar(G) = r(L(G)) — r(G). If
Ar(G) =1, then, due to Theorem 3, the mappings L and C commute if and
only if G is selfcentered. Complete graphs are examples of such graphs. But for
any i € {0,-1} and any graph H without isolated nodes, there is a graph G
with L(C(G)) = C(L(G)) and Ar(G) =1, as the next theorem states.

THEOREM 7. Let H be a graph with n nodes, m > 1 edges without isolated
nodes and i be either 0 or —1. Then there ezist connected graphs G; such that
H = C(G;), L(C(G;)) = C(L(G;)) and i = Ar(G) holds. Moreover, Gy has
4n + 6 nodes and m +n? + 4n + 4 edges.
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Proof. Let V(H) = {v1,...,va} be the node-set of & and let E(H)
be its edge-set. We shall construct graphs Gy and G_; with the requested
properties and start with G,.

Figure 2a. A graph Gy with C(Go) = P3 and C(L(Gy)) = L(C(Gy)).

The node-set of G, equals V(H) U {a, b;, ¢; & & -n}U{ay, az, as,
ﬂl: Pz, 133} Its edse set is E(H) u {aibh a;c;, bici: o4, G I i= 1. '-1“'} U
{av; | i #5}u {@103, agas, B1Ba, Bafls} (see Fig. 2a). One can check that
7(Go) =3 and H = C(Go), since every node outside H has the distance at
least four to some of the nodes a3 and S . Further, any edge from C(Gy) has
the eccentricity three (its distance to a1b; is three). As a center of L(Gp) lies
in a single block of L(Gy), if any edge not from H lies in C(L(Gy)), then
one its endnode, say V1, I8 in H. Then its distance to aib; is four, hence
C(L(Gy)) = L(C(Go)) holds.

Figure 2b. A graph G_; with C(G-1) = P3 and C(L(G-1)) = L(C(G_y)).
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Now we shall construct the graph G_;. The node set of G_; will contain
V(H)U{a;, by, i, di | i=1,...,n}U{zi; | i#5, i=L...,n, j= | B
Its edge-set comsists of E(H) U {zijai, zgvi| i # i} U {aibi, bici, cid; |
i=1,...,n} (see Fig. 2b).

Obviously, H is the center of G_; and r(G_;) =6, as d(v,d;) = 6. Note
that every edge joining central nodes has the eccentricity five due to (1) . Further,
if an edge is adjacent to exactly one central node, say v;, then its distance to
the edge cidy is at least six. Finally, if an edge f is adjacent to no central
node, then its distance to some edge of the form c;d; is also at least six, so
r(L(G-1)) =5=r(G-1) +1 and L(H) = C(L(G-y)) bolds. =]

Figure 3. A graph having the center 2K5 .

If H is bipartite, it suffices to add only six nodes in order to secure the
property in question.

THEOREM 8. Let H be a bipartite graph on n nodes and m > 1 edges without
isolated nodes. Then there is a graph G with n+6 nodes and m+n+4 edges
having the center H and satisfying C(L(G)) = L(C(G)).

Proof. Let A and B be disjoint sets of nodes in H, such that adjacent
nodes lie in distinct sets. We obtain G after the addition of the new nodes
a, aj, az, b, by and by such that a is adjacent to a; and to all nodesin A, b
is adjacent to b; and to all nodes in B and aza; and bb; are also adjacent
(see Fig. 3). Clearly, G has the desired property. (]

Nevertheless, the problem of finding a graph G with the minimal number
f(H) of nodes such that C(L(G)) = L(C(G)) holds and G has a given center
H seems to be far from its final solution.

3. The periphery in line graphs

Now we shall study the existence of line graphs with a given periphery. Note
that r(Per(G)) > d(G) holds for each graph G. ;
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THEOREM 9. Let H be such a nontrivial graph that L(H) has the radius at
most two. Then L(H) is the periphery of some line graph if and only if either
L(H) is selfcentered or H contains two nodes which are not endnodes and each
edge is adjacent to just one of them.

Proof. If L(H) is selfcentered, then L(H) = Per(L(H)) holds. Now as-
sume H contains two nodes = and y which are not endnodes and such that each
edge is adjacent to just one of the nodes z and y. Then L(H) = Per(L(H +zy))
as if we add the edge xy to H, then its eccentricity will be one, while each other
edge has the eccentricity two, since we have dH zy(za, yb) = 2 for pairwise dis-
tinct nodes a,b,z, and y.

Assume now that there exists a graph G such that L(H) is the periphery
of L(G). Then we have 2 > r(L(H)) > r(Per(L(G))) 2 d(L(G)) . Hence L(G)
is either selfcentered or has the diameter two and the radius one. If L(G) is
selfcentered, then L(H) = Per(L(G')) = L(G), hence L(H) has to be selfcen-
tered. Assume now the latter case holds. Then G contains an edge zy with the
eccentricity one and so each edge is adjacent to z or y. Note that L(H) has
the radius two as we have r(L(H)) > d(L(G)) = 2. Hence the edge zy is not
in H . Further, if z is an endnode in H and a is the only its neighbour, then as
H is connected there exists a node b, b# = adjacent to ay. But b= y as the
edge ab is adjacent to either z or y and a is distinct from z and y. Hence ay
has the eccentricity one which contradicts to r(L(H)) =2. So z and similarly
Y is not an endnode, which completes the proof, O

If we prescribe a line graph with the radius at least three as a periphery, then
an even stronger result holds.

THEOREM 10. Let the line graph of a nontrivial graph H have the radius at
least three. Then H = Per(H + K,) and L(H) = Per(L(H + K;)) holds.

Proof. Let v be a node in H + K, which is adjacent to all other nodes,
As r(L(H)) > 3 holds, we have r(H) > 2 from Theorem 3. Hence v is the
only node with the eccentricity one and each other node has the eccentricity
two, so H = Per(H + K;) holds. Further, it is easy to verify that each edge in
H has the eccentricity three in H + K; and all edges adjacent to v have the
eccentricity two, that is why L(H) = Per(L(H + K))) holds. 0
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