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considered successive whenever one can be obtained from the other by
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INTRODUCTION

The codes which are now commonly known as Gray codes were in-
vented and patented by F. Gray in 1953 [9]. For a given set X and a
symmetric relation R of “small difference” on X, a Gray code is an order-
ing of all the elements of X such that every two immediately successive
elements are in R.

Gray codes were examined for such sets as subsets of a given set ([7]
and [12]), permutations ([11] and [19]), combinations ([4], [5], [13] and
[17]), partitions of a natural number ([18]), binary trees ([10], [15] and
[16]) etc. (See also [2], [3] and [6].)

The concept of Gray code is easily explained in graph-theoretical
terms. Let A(X) be a graph with the vertex set X, where two vertices x
and y are joined by an edge whenever z and y are in the “small difference”
relation. Then the problem of finding a Gray code on X is equivalent to
the problem of finding a Hamiltonian path in A(X), whereas the prob-
lem of finding a closed Gray code is equivalent to the problem of finding
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a Hamiltonian cycle in A(X). This method was used in 1958 in the pio-
neering work of E. N. Gilbert, who examined the Hamiltonian paths on
n-cube instead of finding the Gray codes on subsets of a given set.

In this paper we examine closed Gray codes on the set of all noniso-
morphic labellings of vertices of a given graph I'. If we remove an edge
from I', we can have more possibilities for inserting a new edge such that
the resulting graph is isomorphic to I'. In this way from a labelling ',
of I' we get a new labelling I'y and these labellings are in the relation
“small difference” (see Definition 1.1). This relation has the following
real-life motivation: Assume that we have n users in a network. By
successive interchanges of just one line we want to generate all possible
“realizations” of the given type of network in the way that no two con-
figurations are repeated until the first is identical to the last. (In the
case when I' is a path or a cycle, we can regard our task as generating
of Hamiltonian paths or Hamiltonian cycles, respectively, in a complete
graph.)

Let I' be an arbitrary graph; VI' and ET' are used for the vertex
set and the edge set of I', respectively. The complement of I' will be
denoted by T'. By G(T") we denote the automorphism group of I'. Per-
mutations of the set {a1,as,...,a,} are given by the position of the
elements ai,asg,...,a,. So (a1,as,as) means a; — ay, ag — a3 and
a3 — az. Composition of mappings is always to be understood from
right to left.

1. THE k-COPYLIST OF A GRAPH

In this section we give precise definitions of basic notions and some
elementary observations.

Let I' be a graph with vertices uy, us, ..., u, . In this way we ordered
the vertex set of I'. Let z = (z1,x2,...,2,) be any permutation of
the set {1,2,...,n}. Then the labelling of I" by z, I', is the bijection

Ty {uy,us,...,u} —{1,2,...,n}
such that 'y (u;) = x; for all 4, for which 1 < ¢ < n. We remark that by

I';, we denote also the graph I' with vertices labelled by I';; the meaning
of T',, will always be clear from the context.
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Let G(I') be the automorphism group of I'. Two labellings I'; and I,
of I' are I'-equivalent iff there is g € G(I') such that 'y = goT,,.
Let us introduce the relation “small difference” on the labellings of I'.

Definition 1.1. Two labellings 'y, and I'y are in the relation Rf iff
there is a set A of | mutually different edges of 'y, and a set B of |
mutually different edges of T'y such that (ET, — A)|J B = ET',, where x
and y are the permutations of the set {1,2,...,n}, n=|VI| and 1 > 0.

Clearly, the relation R} is symmetric.
Each class of I'-equivalent labellings will be represented by a single
labelling. Now we are able to introduce the basic concept of this work.

Definition 1.2. Let T be the set of all classes of I'-equivalent labellings
of a graph T'. The k-Copylist of the graph T , B¥(T'), is the graph for
which
VBET) ={Ty;T, € T} and
EB*() = {[ly,Ty]; Ts,Ty €T, T, #Ty and there is | < k such
thatT, R Ty} |}

where k > 0.

It is easy to see that this definition is correct for all £ > 0. Note that
BF(') = BY(T") if k and [ are greater than or equal to |ET| .

Clearly, B*(T') is a regular graph. The classes of I'-equivalent la-
bellings I', such that I', RlP I';g where I', # I';y and | < k are called
generators of B¥(T"). The generators can be determined by the sets A
and B from Definition 1.1.

The elements of V B*(I") depend on the ordering of VT, but the struc-
ture of B¥(I") does not.

Lemma 1.3. Let T' and T be isomorphic graphs. Then B¥(T) is iso-
morphic to B¥(T") for all k > 0.

Proof. Denote by ¢ the graph isomorphism between I' and I'. Then ¢
maps labellings of T to labellings of I'. So ¢ induces an isomorphism
between B¥(T') and B¥(TY). O

Now we introduce two basic lemmas.
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Lemma 1.4. The k-Copylist of a graph I' is a vertex transitive graph.

Proof. Let T be the set of all I'-equivalent labellings. It is easy to see
that [[y,T,] € EB®(T) iff [Tyo,, [yvoz] € EBX(T) for any permutation z
of the set {1,2,...,n}.

Since I'goz-10y = I'y, the mapping ¢ : 7 — 7T defined for allT', € T as
@(I',) =T ,04-10y is automorphism of B*(I'), which maps [, to T'y. O

Thus, the structure of B¥(T') in any vertex is completely determined
by the set of generators.

Lemma 1.5. B*(T') is isomorphic to B¥(T).

Proof. Let |VT| = n. Denote by uy,us,...,u, the vertices of ' and T
such that T JT = K,,, where K,, is the complete graph on n vertices.
Since G(I') = G(T'), we have VB*(I') = VB*(T).
Let z be a generator of B¥(I"). Then there are l-element sets A and B
such that (ET;q — A)|JB = ET,, where | < k. But since A(\B = 0,
we have

BT, = (ETi— A)|JB = (BTulJ4) B = (ETu - B) |4

so z is also a generator for I'. Since the generators of B¥(I") are just the
generators of B¥(T'), we see that EB*(T') = EB*(T'). Thus, B*(T) is
isomorphic to B¥(T'). O

The following trivial assertions can be helpful in understanding the
notion of k-Copylist.

Proposition 1.6. For any graph T' we have VBF(T) = VBY(T)
and EBFT) D EBYT) if0<I<k.

Proposition 1.7. Let I' be a graph, n=|VT|, m=|ET|, r=|G(")| and
p="2. Then B°(T) = D, and B™(I') = K, ,

where K, and D, are the complete and discrete graphs, respectively, on
p vertices.
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Proposition 1.8. B*(K,) =K, , forallk >0
BY K, —e) = K(g) , where e is an edge of K,

Bn—l(Kn’l) = Kn_|_1 and Bn_Z(Kml) = Dn-l-l I

In the following sections we always choose a certain representation
of I'-equivalent classes. We thus consider only some simple labellings
and not the classes of labellings. For brevity, the labelling I';, will be
denoted just by x in what follows. So, the labelling x means ', while
the permutation x means just z.

2. PATHS AND CIRCUITS

This section is devoted to finding Hamiltonian cycles in B'(P,) and
B?(Cp41), where n > 3, P, is a path on n vertices and C,, ;1 is a circuit
on n+1 vertices.

Let us denote the vertices of P,, as follows (see Fig. 2.1):

P,:

U1 u2 ug Up_1 Yn

Fig. 2.1

Then G(P,) = {id,w}, where

id =(u1, g,y ..., Up) and

W =(Upy, U1y« + -, U1) -

So, [VBY(P,)| = 1 .

The classes of P,-equivalent labellings will be represented by simple
labellings =, where the elements 1,2 and 3 are in ordering 1,2,3 or 2, 3,1
or 3,1,2 in the permutation z. (There can be some other elements
between 1,2 and 3.)

In BY(P,) we have just three possibilities for choosing A and B to
create the generators (see Fig. 2.2):

(a) A= {[u,uit1]}, B ={[u1,uit1]}, where2<i<n-—1

(b) A={[uj,ui+1]}, B={[wiu,]}, wherel <i<n-—2

(c) A={[uj,uit1]}, B={[u1,un]}, where2<i<n-2.
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(a) N N —
Ui u2 U; Wig1Ui42 Un
Ul U2 Ui Uit1Uit2 Un
Ul U2 Ui Uit1Uit2 Un
Fig. 2.2

We now present an algorithm for finding a Hamiltonian cycle
in BY(P,).

Algorithm 2.1.

STEP 1 1:=0, A;yq1:=(1,2,...,n).

STEP 2 4 := 1 + 1. Now A; = (n,n—1,...,k+1,a,,ai,,...,0i,),
where a;, # k (but it is also possible that k = n, i.e.,
A; = (aiy, Wiy, -« -, 04, ), Where a;; #n).
STEP 3 If k = 2 then go to STEP 5.
STEP 4 A;t1:= (aiy, Gig, - - -, 04y, 03y, k+1,k+2,...,n), go to STEP 2.
STEP 5 A;41:=(1,2,...,n) end.

Here a;, , a,, - - - a;, stand for the elements of the set {1,2,...,n}. The
Algorithm 2.1 acts on permutations, but we can view these permutations
as labellings (see section 1).

Proposition 2.2. The sequence of labellings Al,A2,...,A%s,A%!+1

constructed by the Algorithm 2.1 is a Hamiltonian cycle in B*(P,) for
all n > 3.

Proof. Clearly, A; € VB(P,) for all A; constructed by the Algorithm 2.1.J]
We divide the proof into three steps.

1. In each permutation A; constructed by the Algorithm 2.1 the el-
ements 1,2 and 3 are in ordering 1,2,3 or 2,3,1 or 3,1,2 .

This assertion is true if + = 1 and it is easy to see that this
ordering can not be reversed neither in the STEP 4, nor in the
STEP 5. So we have A; # wo A; for all A; and A; constructed by
the Algorithm 2.1, since the elements 1,2 and 3 are in ordering
3,2,1or1,3,20r2,1,3 in wo Aj.
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2. [A;, Aiy1] € EBY(P,) for all 4, for which A; and A;y; are con-
structed by the Algorithm 2.1.

But A;4; can be constructed only in STEP 4, or STEP 5. (In
the second case A; = (n,n—1,...,3,1,2).) In both these steps
[A;, Ai11] is an edge of B'(P,) created by the generator of (b)-
type (see above).

3. Ay, Ag,.. .,A%,A%q_l is a Hamiltonian cycle in B1(P,).

Let A = (a1,as,...,a,) be a permutation constructed by the
Algorithm 2.1 such that ay = n, where 1 < k < n. Then A was
constructed from B = (agy1,...,0n,01,02,...,05-1,n) after n—

k (STEP 2-STEP 4)-cycles of the Algorithm 2.1.

Let B = (b1,ba,...,bp—1,n) and by = n—1, where 1 < [ <
n — 1. Then B was constructed from
C = (bi41y---ybp_1,b1,...,bi—1,n—1,n) on (n—1-1) -n cycles of
the Algorithm 2.1. So, A was constructed from C on
((n—1)—1) - n + n—k cycles of the Algorithm 2.1.

But since (2,1,3,...,n) can not be constructed by the Al-
gorithm 2.1 (see part 1 of this proof), the permutation A was
constructed from (1,2,...,n) on m cycles of the Algorithm 2.1.
Since (n—1) 4+ (n-(n—2))+---+n-(n—1)-...-4-2=

n-((n—1)-(...-(424+3)+...)+n—-2)+n—-1=
(k- (BS54 k—1. ) +n—1=2 -1,
m is at most %' —1. So there is just one 7 < %' such that A; = A,
for any permutation A with 1, 2 and 3 in allowed ordering (i can
be strictly computed).

Since A%: = (n,n—1,...,3,1,2), we have A%’+1 =(1,2,.. ,n)l
and Aq, Ao, .. .,A%z+1 is a Hamiltonian cycle in B(P,).
!

Clearly, the algorithm finishes in the sTEP 5 with i = % . [

Now we find a Hamiltonian cycle in B%(C,,), where n > 4. Let us
denote the vertices of C,, as follows (see Fig. 2.3):

C, o

U1 U U3 S Up_2 Un—1

Fig. 2.3
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Since G(C,,) is the dihedral group, we have |G(C,)| = 2n and
VB(Cp)l = #51 .

Note that B'(C,) = D,,, where m = @ The classes of C,,-
equivalent labellings will be represented by simple labellings x, where
the element n is in the n-th position and the elements 1,2 and 3 are in

ordering 1,2,3 or 2,3,1 or 3,1,2 in the permutation .
Then ¢ : VB%(Cyy1) — VBY(P,), where n > 3, defined as

e(ar, a2,y ..., a0, n+1) = (a1,a2,...,a5)

is a bijection between V B2(C, 1) and VB(P,).

Lemma 2.3. Let n > 3 and [c,d] be an edge of B'(P,) created by a
generator of (b)-type. Then [~ (c), p~1(d)] is an edge of B*(Cyy1)-

Proof. Let ¢ = (c1,¢2,...,¢n). Since the edge [c,d] is created by the
generator of (b)-type, we have

d::(clac27'"7ckacn7cn—11"'7ck+1) or
d::(ck+lack+25'"1cnuckvck—1,"'7cl)

according to ordering the elements 1, 2 and 3, where 1 < k < n—2.

In both these cases it is sufficient to choose A = {[un, Un+1], [Uk, Uk+1]}

and B = {[ug,un], [Uk+1,Uns1]} in Definition 1.1 and we see that
[071(c), o7 1(d)] is an edge of B%(Cp41) (see Fig. 2.4). O

Un+1
o—0— - - - Uk+1 _Un o Yk+1 _Un
U1 U2 uki , Ul u2 Ug

Fig. 2.4

Let the Algorithm 2.4 be created from the Algorithm 2.1 by re-
placing of all the permutations (x1,%s,...,Z,) by the permutations
(x1,Z2,-.-,Zn,n+1). Then we have the following consequence of
Proposition 2.2 and Lemma 2.3:
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Proposition 2.5. The Algorithm 2.4 finds a Hamiltonian cycle in
B?(Cpy1) for allm > 3.

We remark that B2(C, 1) is not isomorphic to BY(P,) if n > 4.

3. BIPARTITE GRAPHS

This section is devoted to finding Hamiltonian cycles in
B™tn=2(K,. ), where m>n and K, , is the complete bipartite graph.

Let us denote the vertices of VK, ,, as shown in Fig. 3.1.

Then |G(Kmn)| = mln! if m>n, and |G(Ky, )| = 2:(n!)? if m=n.

The classes of K, ,-equivalent labellings will be represented by simple

labellings x = (a1, a2,.-.,0m+n), Wwhere a1<as<... <@y and Gp41<
Am42< . . . <Gmin - Moreover, we claim that a;=1 if m=n.

Fig. 3.1

We have only one type of generator in B™*+"~2(K,, ) if m > n+2
or m = n (see Fig. 3.2 (a) - reversing an edge of K,, ). We call it
a generator of (a)-type. Certainly the generator of (a)-type is also a
generator for B"*"~2(K,, ,,) , where m = n+2 or m = n+1. However,
we have still one more type of generator in B™t"~2(K,, ) if m = n+2
(see Fig. 3.2 (b)). We call it a generator of (b)-type.

It is easy to check that B™*t""3(K,, ,) is a discrete graph whenever
m # n+1 (use Lemma 1.5). But B"(K,, ,) is not discrete if m = n+1,
since in B" (K, +1,,) we have a generator of (c)-type (see Fig. 3.2 (c)).
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Fig. 3.2

In the following we use only the generators of (a)-type.

Denote by Cy; the graph whose vertex set is the set of all /-element
combinations of k-element set, where two vertices are joined by an edge
whenever they differ as sets in just one element. Then we have:

Lemma 3.1. There is a graph homomorphism from Cy,; into
B™t=2(K,. ) for some k and | depending on m and n.

Proof. We distinguish two cases.

1. m>n.
Let ¢ : Cotn.m — B™T""%(K,, ,,) be a mapping defined as

<p{a1,a2, .. ',am} = (blab2a o "bmabm—{—la .. -abm—l-n)

where {al,az,...,am} = {bl,bQ,...,bm}, bi<ba< ... <by,,
bm+1<bm+2< . <bm—|—n and {bl, ceey bm—l—n} = {1, ceey m+n}
Then ¢ is a bijection from VCypyypnm to VBT "2(K,, ).

Two vertices A and A’ are joined by an edge in Cy, 4y, , Wwhen-
ever they differ in just one element. But then ¢(A) and ¢(A’)
are joined by an edge created by the generator of (a)-type in
B™t=2(K,. ). So ¢ is a graph homomorphism.

2. m=n.
Let ¢ : Cop_1n—1 — B> %(K,, ) be a mapping defined

Q0{011,(l2, .. ',an—l} = (17 b27b37 .. 'abnvbn+17 .. 'ab2n)

where {al, aA2,..., an_l} = {b2_1, b3—1, ey bn—l},
bo< ... <by, bn+1< ...<bsy, and {bz, ceey b2n} = {2, ceey 2TL}
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Then it can be shown that ¢ is a bijection from VCs,_1,5-1
to VB>~ 2(K,, ) which is a graph homomorphism by arguments
similar to the previous ones. [

In [4] P. J. Chase gives an algorithm finding a Hamiltonian cycle in
Cp, for all k and [ such that k>I>0 (see also [5]). G. Ehrlich gives an-
other algorithm in [6]. Thus, Lemma 3.1 can be used for finding Hamil-
tonian cycles in B™*"~2(K,, ,) from those in Cj ;. However, since Cj
can be decomposed into two graphs I' and I isomorphic to Cy_1,; and
Ck—1,1—1, respectively, and Cj4q; is isomorphic to K;; and Cy ;1 is iso-
morphic to Kj, it can be proved that Cj; is Hamiltonian-connected
by induction (see section 4, part 3 of proof of Lemma 4.1). Thus,
Bmtn=2(K,. ) is Hamiltonian-connected graph as well (see section 4
for the notion of the Hamiltonian-connectivity).

As we mentioned above, B™t"3(K,, ,,) is a discrete graph for m #
n+1, while B™*"~2(K,, ,) has a Hamiltonian cycle. But if m = n+1,
even the graph B™(Kj,41,) is not discrete. In B"(Kyy1.,), edges are
created by the generators of (c)-type.

Two vertices (a1, a2, ...,02,+1) and (b, ba,...,ban+1) are joined by
a generator of (c)-type in B" (K, 1 ,) whenever

‘{Cbl, A9y ooy an+1} ﬂ{bl’ bg, ey bn+1)}‘ =1.
It means that

‘{an+2, An43,---, azn+1} ﬂ{bn+2; bnis,---, bzn+1}‘ =0.

Fig. 3.3

Thus, B"(Kn+1,n) = Ony1, where O, 11 are the odd graphs (see [1]
and [14]). The odd graphs have been studied intensively. It is known
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that O,, has a Hamiltonian cycle for n € {4, 5,6, 7} ([14]), but for n>7 it
is still an open problem. However, B*(K32) = O3 has no Hamiltonian
cycle, because O3 is the well-known Petersen graph (see Fig. 3.3).

4. FORKS

This section is devoted to finding Hamiltonian cycles in 1-Copylist of
the fork Fj,, where n > 5.

Fork F, is a tree consisting of a path on n—2 vertices, (n—2 > 3),
with two new vertices adjoined to one end of the path. Let us denote
the vertices of F}, as shown in Fig. 4.1.

Then G(F,,) = {id,w}, where

id =(u1, U,y ..., Up) and

w :(u17 U2, - - -, Un—2, Un, un—l) .

So, [VBY(F,)| = 2% .

Un—1
u1 U2 us Unp—3 Un—2

Fig. 4.1

The classes of F,,-equivalent labellings will be represented by simple
labellings z = {z1,...2n—1, %, }, where z,_1 < zy,.

In BY(F,) we have three types of generators:

(a) A= {[uj—1,u]}, B = {[u1,u4]}, where 3 <i < n—2
(b) A= {[un—g,un—3]}, B={[un—a,up1]} or

A= {[un—a,un—sl}, B = {[un—4, un]}
(¢) A={[un—2,un-1]}, B = {[uz, un—1]} or

A = {[un—2,unl}, B = {[uz,us]},

where A and B are the sets from Definition 1.1 (see Fig. 4.2).
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Un—1
(a) & e e Ny o
u1 U2 Ui—1 Uj Uj+41 Un—2 Unp
(b) Up—1
U1 u2 us Un—4 Un—3 Un—2 Un
CUn—1
U1 u9 us Unp—3 Un—2 oy

n

Fig. 4.2

We recall that a graph I' is Hamiltonian-connected iff there is a Hamil-

tonian path between any two distinct vertices of I'. It is easy to see that
there is a Hamiltonian cycle in T if I' is Hamiltonian-connected and
VT| > 2.

Lemma 4.1. BY(F,) is Hamiltonian-connected if n > 7.

Proof. We divide the proof into five steps.

1. The maximal connected subgraphs S; of B(Fy) with edges cre-
ated only by generators of (a)-type are Hamiltonian-connected.

We remark that all such graphs S; are mutually isomorphic

and have (7—3)! = 24 vertices. One of the graphs S is in Fig. 4.3.
The vertices A, ..., Z are labellings of F7 and below we give the
first four members of these labellings, since the last three are
always 5,6,7 in this ordering. So, instead of Z = (1,2,3,4,5,6,7)
we simply write Z = 1234.

The assertion 1 will be proved by simple enumeration of Hamil-Jj

tonian paths. Since S7 is vertex-transitive, it is enough to find
Hamiltonian paths from all the vertices of S7 to the vertex Z (see

Fig. 4.3):
ABCDEFGHIJKLMNOPRSTUVXYZ A=2134
BGHIVXYPRJKLMNOCDEFSTUAZ B = 4312
CBGFEDKLMHIJRSTNOPYXVUAZ C = 3412
DCOPYXEFGBAUVIHMNTSRJKLZ D = 1432
EFGBCDKLMHIJRSTNOPYXVUAZ E = 4132
FGBCDEXYPONTSRIJKLMHIVUAZ F = 3142
GBCONTSFEDKLMHIJRPYXVUAZ G = 1342
HIJKLMNTSRPOCDEFGBAUVXY Z H = 2431
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IVXYPONMHGFEDCBAUTSRJKLZ I =4231
JIHMLKDEFGBCONTSRPYXVUAZ J = 3241
KJRPYXVIHGBAUTSFEDCONMLZ K = 2341
LMHIJKDEFGBCONTSRPYXVUAZ L = 4321
MNOCDEFSTUABGHIVXYPRJKLZ M = 3421
NTSRJKDCOPYXEFGBAUVIHMLZ N =1243
OPRSTNMLKJIHGFEDCBAUVXY Z O = 2143
PRIKLMNOCDEFSTUABGHIVXYZ P = 4123
RPONTSFGHMLKJIVUABCDEXY Z R =1423
STNOCBGFEDKLMHIJRPYXVUAZ S = 2413
TSRPONMLKJIHGFEDCBAUVXYZ T = 4213
UTSFEDCONMLKJRPYXVIHGBAZ U = 3124
VUTSFGHIJRPYXEDKLMNOCBAZ V =1324
XVIHGBAUTSFEDCONMLKJRPY Z X =2314
YXVUTSRPONMLKJIHGFEDCBAZ Y = 3214

2. The maximal connected subgraphs S,, of B'(F},) with edges cre-

ated only by generators of (a)-type are Hamiltonian-connected if
n>"T7.

We prove this assertion by induction.

If n > 7, the graph S,, consists of n—3 copies of S,,_1 joined
by edges created by the generator z with A = {[un—3, un—2]}
and B = {[uy,un—2]} (see Definition 1.1). The edges created
by the generator z form a linear factor in S,, and between any
two distinct copies of S,,_1 in S, there are exactly (n—5)! edges
created by the generator z. (We fix the elements in the first,
n—3-rd, ..., n-th positions in labellings.) In this way we obtain
K,,_3 from S,, by contraction of all the copies of S,,_; into single
points.

For any A, B € VS,, we find a Hamiltonian path from A to B
in S,,. We distinguish two cases:

a. A and B are in the same copy of S,,_1 (see Fig. 4.4).

We can find a Hamiltonian path H from A to B in S,,_; by
induction. Since the edges created by z form a linear factor,
there are two successive vertices on H, say X and Y, such that
zoX and zoY are in distinct copies of S,,_1 in S,,. Let us order
the remaining copies of S,,_; arbitrarily. Since n>7, we have
(n—5)! > 2. Thus, we can choose nonadjacent edges between
the copies of S,_; which join them in the required order (see
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Fig. 4.4). Then we can complete H — [X,Y] to a Hamiltonian
path in S, using induction.
b. A and B are in distinct copies of S,,_1.

Let us order the copies of S,_; such that the one containing
A will be the first and that containing B will be the last. Then
we can find a Hamiltonian path in S, as in the previous case.

Ur § R

Fig. 4.3 Fig. 4.4

. There is a path from B to C in Cj o traversing all the vertices

of Ck 2 just once and missing the vertex A for all mutually dif-
ferent A, B,C', where A, B,C € V(. 2 and k>3.

Here C 2 is the vertex-transitive graph defined in the sec-
tion 3. Again, we prove this assertion using induction.

If k£ = 3, then Cj 2 = K3 and the assertion trivially holds.

Let k > 3. Then Cj 2 can be decomposed into two graphs I'
and IV (all combinations in IV contain the element &, but those of
I' do not), where I is isomorphic to Ck_1 2 and I'' is isomorphic
to Ki—1 (see Fig. 4.5). Since Cy 2 is a vertex-transitive graph,
we can suppose that A € I'. We distinguish three cases:
a) B,CeVl
b) BeVI,C e VI
c) B,CeVvI’
a) There is a path H in T traversing all the vertices of T except
of A (by induction). Let X and Y be two successive vertices on
H. Then there are X', Y’ € VIV, such that X’ # Y’ and X is
joined to X’ and Y is joined to Y’'. (Each vertex from I is joined
to exactly two vertices in I".) Since I' is isomorphic to Kj_1,
we can complete H — [X, Y] to the required path in C s.
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The remaining cases b) and ¢) can be proved similarly using
the fact that each vertex of I' is joined to exactly two vertices of
I'" and each vertex of T is joined to exactly k—2 vertices of T'.

We remark that the assertion 3 implies that Cy o is Hamilto-
nian-connected.

Ck’z :

A K
k—1
Cr_1,2

Fig. 4.5

4. Each maximal connected subgraph S, of B(F,,) created only by
generators of (a) and (b)-types is Hamiltonian-connected.

Again, such subgraphs are mutually isomorphic, so the def-
inition of S, is correct. Let all S,-subgraphs of S, be con-
tracted into single points. Then the resulting graph is isomorphic
to Cn—l,Z .

Now we can prove the assertion 4 by arguments similar to
those used in the proof of the assertion 2. If the vertices A, B
of S are in the same copy of S, we use the assertion 3, and
if the vertices A and B are in distinct copies of S,, we use the
Hamiltonian-connectivity of C,,_1 2.

5. B!(F,) is Hamiltonian-connected.

Let all subgraphs S, of B1(F,,) be contracted into single points.|]
Then the resulting graph is isomorphic to K,, and so the asser-
tion 5 can be proved by arguments similar to those used in the
proof of the assertion 2. [J

The following lemma completes the previous one.

Lemma 4.2. BY(F,) is Hamiltonian-connected if n € {5,6}.

Proof. Let S/ be the maximal connected subgraph of B!(F},) created
only by generators of (a) and (b)-types, where n € {5,6}.
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The graph Sy containing the labelling (1,2, 3,4, 5) is in Fig. 4.6, where
A=(1,2,3,4,5), B=(1,4,3,2,5), C=(4,1,3,2,5),
D= (4,5,3,1,2), E= (4,2,3 1,5), F=1(2,4,3,1,5),
G=(21,3,4,5), H=1(2,5,3,1,4), I=(52,3,1,4),
J=1(5,4,3,1,2), K=(51,3,2,4), L=(1,5,3,2,4).
It is easy to verify that S¢ is Hamiltonian-connected.

Se:

Fig. 4.6

Denote by I' the maximal connected subgraph of B! (Fgs) created only
by generators of (b)-types and one generator of (a)-type with A =
{[us,u4]} and B = {[u1,u4]} (see Definition 1.1). Then I is isomorphic
to Se. So, S¢ consists of four copies of Sy connected by a generator with
A = {Jug,us]} and B = {[u1,u3]}. Moreover, there are exactly three
edges between any two copies of S¢ in S¢. Since we get K4 by contrac-
tion of all the copies of S¢ in S¢, using the arguments from the assertion
2 of the previous proof we obtain that S is Hamiltonian-connected.

So the graphs S, are Hamiltonian-connected if n € {5,6}. But then
the assertion 5 of the previous proof completes the proof. [

We conclude this section with the following proposition:

Proposition 4.3. BY(F,) is Hamiltonian-connected.

We remark that the proofs of Lemma 4.1 and Lemma 4.2 can be used
for finding Hamiltonian paths between any two given vertices of B!(F},).

CONCLUDING REMARKS

It would be interesting to characterize those graphs I" for which B¥(T")
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is connected for “small” k. Such k express some sort of stability property
of I'. (The concept of semi-stable graph (e.g. [8]) is in close relation to
such idea of stability.)
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