NOTE ON LINEAR ARBORICITY

MARTIN KNOR

ABSTRACT. The conjecture of linear arboricity requires to decompose
any n-regular graph into ["THW linear forests. Here a new approach to
this conjecture is developed. We bound the degrees in forests by L"T'HJ
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INTRODUCTION

In this note, a graph will always mean a finite undirected graph with-
out loops and multiple edges. A graph I' is n-regular if the degree of
each vertex in I is n. We emphasize that the letter n will always be used
only in this meaning.

A letter T will indicate a forest. A linear forest is a forest with all
vertex degrees less or equal to 2. For any graph T, the arboricity Y(T")
of I' (the linear arboricity Z(T") of I'), is the minimum number of edge
disjoint forests (linear forests), whose union is I

Symbols V(I') and E(I') denote the vertex set and the edge set of a
graph I', respectively. An edge joining two vertices z and y we denote
as zy.

The degree of vertex x in a graph I" (a forest T') is denoted as degr ()
( degr(x) ). The greatest degree in a graph I' is denoted as A(T).

For a real number v, |v]| denotes the lower integer part of v and
[v] = —[-v].

In 1961 C. St. J. A. Nash-Williams [9] and W. T. Tutte [12] have
determined the arboricity of arbitrary graph. In particular

Y(I) = [n;—l-‘

for an n-regular graph T'.
The following conjecture on linear arboricity is due to J. Akiyama,
G. Exoo and F. Harrary [3].

Conjecture 1. For an arbitrary n-reqular graph T,

=) = [n;lw
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The inequality 2(I') > [241] follows from Z(I') > Y(I'). The converse
is not known. However, the conjecture has been proved in some special
cases.

For n=3, 4, it was proved by J. Akiyama, G. Exoo and F. Harrary in
[3] and [4]. For n=5,6,8, it was proved by H. Enomoto and B. Peroche
in [6], for n=6, by P. Tomasta in [11] and for n=10 by F. Guldan in [7].

In general, as we mentioned above, the linear arboricity is at least
[2+1] . Already in 1981 it was shown in [4] that Z(T') < [3 [2]] for any
n-regular graph I'. In 1987 N. Alon [5] proved by probabilistic methods,
that for arbitrary >0 and n sufficiently large the linear arboricity of an
n-regular graph is less than (% + e) 1.

The problem of linear arboricity in multigraphs was studied by
H. Ait-djafer [1], [2].

In this note we attempt to look at the problem from another point of
view. As we mentioned above, we have Y(I') = [2F1] for an arbitrary
n-regular graph I'. Let A,[R] denotes the maximum degree of vertices
over all components in decomposition R of an n-regular graph to ["THW
forests. Hence, A,[R]| < n is the best possible inequality which can be
derived from [9] and [12], because the authors admit vertices of arbi-
trary degree. However, Conjecture 1 requires to find a decomposition R,
satisfying A,[R] = 2.

Up to date, no better bounds are known in general. In this note we
show that Ap[R] < [23]. A short proof of Conjecture 1 for n = 3
using techniques similar to those used in the proof of Theorem 1 can be
found in [8].

MAIN RESULTS

All proofs here are constructive. We decompose a graph I into forests
T;,1=1,2,...,h.

We use elementary operation of inserting ¢-admissible edge zy into
forest T;, 1 = 1,2,...,h. Let k be a constant to which we decrease the
value of A,[R]. An edge zy ¢ E(T;) is i-admissible iff:

(i) T;U zy is a forest
(i) deger ay)(@) < &

We note that inserting an i-admissible edge into a forest 7; cannot
increase the number of vertices of degree greater then k in forests 7} , j =
1,2,...,h.

We set h = ["TH] . The following identity will often be used.

1 -1 1
n—h—i—lzn—i—l—[n—i_ —‘:n-l—l-i—{ ~ J:VH J

2 2 2

Theorem 1. Let I' be an n-regular graph, n > 3. Then there are
h = ("TH] edge disjoint forests Ty,Ts,..., Ty, covering I' such that

AT) < |2 ,i=1,2,.. k.
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Proof. Assume that there is a graph I' which cannot be decomposed into
forests, where A(T;) < |*1],i=1,2,...,h.

By C. St. J. A. Nash-Williams [9] and [10], there is a decomposition
of I' into h forests. We can assume that the decomposition is chosen so
that the number of vertices z € V(I') with degr,(z) > |2 ] for any i,
is minimum.

Let = be a vertex with degr, (z) > | %+ | = n — h 4+ 1. Without loss
of generality let ¢ = 1. In the following we modify our decomposition of
I to a new one with degr, (£) = n — k + 2, and then we determine the
degrees of some vertices in T;.

Since 2(n—h+2) > n+2, the only forest T; with degr, (z) > | %41 ] is
T;. Let degr, (z) = | 2L | +j. Since n—(n—h+1+4j) = h—j—1, there are
j forests say Ty, T, ..., Tj4+1 with degr, () = 0 foralli € {2,3,...,j+1}.
Since n — h+ 2 > 2 if n > 3, there are at least two vertices y with
xzy € E(Ty). Let y be such that zy € E(T1). Since 14+2(n—h+1) > n+1,
we have degr, (y) < n—h+1 forsome i € {2,3,...,j+1}if j > 2. Assume
degr;,,(y) <n —h+ 1. Then zy is (j+1)-admissible and we can insert
zy into Tj41. We decreased degr, (z) by one.

Now we have j — 1 forests T5,T5,...,T; with degr,(z) = 0 for all
i€ {2,3,...,7}. Let y be such that zy € E(Ty). If j —1 > 2, zy is
i-admissible for some 7 € {2,3,...,j} and we can insert zy into T;.

Thus, j — 1 neighbours of x in 7} we can insert into Tj,
i € {2,3,...,j+1}. Then degr,(x) = n — h + 2 and there is a forest
say Ty with degrp,(z) = 0. But degr,(y) > n — h + 1 for all y with
xy € E(T)) since otherwise we get a contradiction with the original
choice of T1,T5,..., T in I

Fig. 1

The edge zy is i-admissible if  and y are in distinct components of

T;,i > 2, because of (n —h+2)+(n—h+1) > n+1 (see Fig. 1). Thus,
degr,(z) =n—h+2 and degr,(z)=1,i=3,4,...,h,
degr,(y) =n—h+1 and degr,(y)=1,i=1,3,4,....h

for all y with zy € E(T1) because I is n-regular (see Fig. 1).

Let y be a fixed vertex of VI' with zy € E(T;). Then x and y are
joined by a path in T3. Let us denote y=ag, a4, ..., a,=x the vertices
of this path (see Fig. 2).

We claim degr, (a1) > n — h + 1. Otherwise we can insert ajag into
T; and zy into T5. We get again forests because xy is 3-admissible
if arap ¢ E(T3), and ajap is l-admissible if zy ¢ E(T1). But then
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degr, () = n — h + 1 that is a contradiction with the original choice of
Tl,Tz,...,Tk; inT.

Vertices ap and a; must be in the same component of T;,
1 = 4,5,...,h. Otherwise we can insert aiag into 7; and zy into T3,
because ajag is i-admissible. Thus, degr,(a1) > 1, ¢ > 3.

We have the following identities:

degr,(a1) =2, degr,(a1) =n—h+1, degr,(a1)=1,1i>3,
because n = degr(a1) > 2+ (n—h+1)+h—3=n.

Analogously, we show that degr, (a2) > n — h + 1 because otherwise
we can insert ajas into To and xy into T3. Similarly as and a; must be
in the same component of 7T; for each ¢ > 3 because otherwise we can
insert ajaq into T; and xy into T3 (see Fig. 2). It means that:

degr,(az) =2, degr,(az) =n—h+1, degr(az)=1,17>3.

We can repeat this construction till a,, is reached. Finally we obtain:

degr,(z) =1, degr,(z)=n—h+2, degr(z)=1,1i>3.

Fig. 2

Hence degr, (z)=degr,(y)=1 and degr,(a;)=2, ¢ = 1,2,...,m—1.
But as we mentioned above, there exists ¥ # y with yz € E(T;). We

obtain existence of a path in T3 with vertices ¥ = bg, b1,...,b;z = x by
an analogous process. Here degr, (y) = degr, (z) = 1 and degr, (b;) = 2,
1=1,2,...,m— 1. It means that x, y and ¥ are three distinct vertices

of degree 1 in linear tree that is a contradiction.
This concludes the proof of Theorem 1. [

We have proved that every n-regular graph, for which n > 3, can
be decomposed into ["T"'lw forests with maximum degree [”T"'IJ . As-
sumption n > 3 was used to establish three forests, which yield the path
ag, a1, .. .,ay in the proof. Since ["THJ = 2 if n = 4, we proved the
Conjecture 1 for n = 4.

Every graph of degree not greater than k£ can be completed to
k-regular graph by adding new vertices and edges. So Theorem 1 imply
that each graph I' with A(I‘)k: k can be decomposed into (%W forests

+1

of degree not greater than \_TJ . The decreasing of degrees in forests

to some function asymptotically equal even to o(n) is still open.
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