NOTE ON LINEAR ARBORICITY

MARTIN KNOR

ABSTRACT. The conjecture of linear arboricity requires to decompose any *n*-regular graph into $\lceil \frac{n+1}{2} \rceil$ linear forests. Here a new approach to this conjecture is developed. We bound the degrees in forests by $\lfloor \frac{n+1}{2} \rfloor$.

This is a preprint of an article accepted for publication in Mathematica Slovaca ©1994 (copyright owner as specified in the journal).

Introduction

In this note, a graph will always mean a finite undirected graph without loops and multiple edges. A graph Γ is *n*-regular if the degree of each vertex in Γ is n. We emphasize that the letter n will always be used only in this meaning.

A letter T will indicate a forest. A linear forest is a forest with all vertex degrees less or equal to 2. For any graph Γ , the arboricity $Y(\Gamma)$ of Γ (the linear arboricity $\Xi(\Gamma)$ of Γ), is the minimum number of edge disjoint forests (linear forests), whose union is Γ .

Symbols $V(\Gamma)$ and $E(\Gamma)$ denote the vertex set and the edge set of a graph Γ , respectively. An edge joining two vertices x and y we denote as xy.

The degree of vertex x in a graph Γ (a forest T) is denoted as $deg_{\Gamma}(x)$ ($deg_{T}(x)$). The greatest degree in a graph Γ is denoted as $\Delta(\Gamma)$.

For a real number v, $\lfloor v \rfloor$ denotes the lower integer part of v and $\lceil v \rceil = - \lfloor -v \rfloor$.

In 1961 C. St. J. A. Nash-Williams [9] and W. T. Tutte [12] have determined the arboricity of arbitrary graph. In particular

$$Y(\Gamma) = \left\lceil \frac{n+1}{2} \right\rceil$$

for an n-regular graph Γ .

The following conjecture on linear arboricity is due to J. Akiyama, G. Exoo and F. Harrary [3].

Conjecture 1. For an arbitrary n-regular graph Γ ,

$$\Xi(\Gamma) = \left\lceil \frac{n+1}{2} \right\rceil \quad .$$

The inequality $\Xi(\Gamma) \geq \lceil \frac{n+1}{2} \rceil$ follows from $\Xi(\Gamma) \geq Y(\Gamma)$. The converse is not known. However, the conjecture has been proved in some special cases.

For n=3, 4, it was proved by J. Akiyama, G. Exoo and F. Harrary in [3] and [4]. For n=5, 6, 8, it was proved by H. Enomoto and B. Peroche in [6], for n=6, by P. Tomasta in [11] and for n=10 by F. Guldan in [7].

In general, as we mentioned above, the linear arboricity is at least $\lceil \frac{n+1}{2} \rceil$. Already in 1981 it was shown in [4] that $\Xi(\Gamma) \leq \lceil \frac{3}{2} \lceil \frac{n}{2} \rceil \rceil$ for any n-regular graph Γ . In 1987 N. Alon [5] proved by probabilistic methods, that for arbitrary $\epsilon > 0$ and n sufficiently large the linear arboricity of an n-regular graph is less than $\left(\frac{1}{2} + \epsilon\right) \cdot n$.

The problem of linear arboricity in multigraphs was studied by H. Aït-djafer [1], [2].

In this note we attempt to look at the problem from another point of view. As we mentioned above, we have $Y(\Gamma) = \lceil \frac{n+1}{2} \rceil$ for an arbitrary n-regular graph Γ . Let $\Delta_n[\mathcal{R}]$ denotes the maximum degree of vertices over all components in decomposition \mathcal{R} of an n-regular graph to $\lceil \frac{n+1}{2} \rceil$ forests. Hence, $\Delta_n[\mathcal{R}] \leq n$ is the best possible inequality which can be derived from [9] and [12], because the authors admit vertices of arbitrary degree. However, Conjecture 1 requires to find a decomposition \mathcal{R} , satisfying $\Delta_n[\mathcal{R}] = 2$.

Up to date, no better bounds are known in general. In this note we show that $\Delta_n[\mathcal{R}] \leq \lfloor \frac{n+1}{2} \rfloor$. A short proof of Conjecture 1 for n=3 using techniques similar to those used in the proof of Theorem 1 can be found in [8].

MAIN RESULTS

All proofs here are constructive. We decompose a graph Γ into forests T_i , i = 1, 2, ..., h.

We use elementary operation of inserting *i*-admissible edge xy into forest T_i , i = 1, 2, ..., h. Let k be a constant to which we decrease the value of $\Delta_n[\mathcal{R}]$. An edge $xy \notin E(T_i)$ is *i*-admissible iff:

- (i) $T_i \cup xy$ is a forest
- (ii) $deg_{(T_i \cup xy)}(x) \leq k$
- (iii) $deg_{(T_i \cup xy)}(y) \leq k$

We note that inserting an *i*-admissible edge into a forest T_i cannot increase the number of vertices of degree greater then k in forests T_j , $j = 1, 2, \ldots, h$.

We set $h = \left\lceil \frac{n+1}{2} \right\rceil$. The following identity will often be used.

$$n-h+1=n+1-\left\lceil\frac{n+1}{2}\right\rceil=n+1+\left\lfloor\frac{-n-1}{2}\right\rfloor=\left\lfloor\frac{n+1}{2}\right\rfloor$$

Theorem 1. Let Γ be an n-regular graph, n>3. Then there are $h=\left\lceil\frac{n+1}{2}\right\rceil$ edge disjoint forests T_1,T_2,\ldots,T_h covering Γ such that $\Delta(T_i)\leq \left\lfloor\frac{n+1}{2}\right\rfloor$, $i=1,2,\ldots,h$.

Proof. Assume that there is a graph Γ which cannot be decomposed into forests, where $\Delta(T_i) \leq \left| \frac{n+1}{2} \right|, i = 1, 2, \dots, h.$

By C. St. J. A. Nash-Williams [9] and [10], there is a decomposition of Γ into h forests. We can assume that the decomposition is chosen so that the number of vertices $z \in V(\Gamma)$ with $deg_{T_i}(z) > \left\lfloor \frac{n+1}{2} \right\rfloor$ for any i, is minimum.

Let x be a vertex with $deg_{T_i}(x) > \lfloor \frac{n+1}{2} \rfloor = n-h+1$. Without loss of generality let i=1. In the following we modify our decomposition of Γ to a new one with $deg_{T_1}(x) = n-k+2$, and then we determine the degrees of some vertices in T_i .

Since $2(n-h+2) \geq n+2$, the only forest T_i with $deg_{T_i}(x) > \left\lfloor \frac{n+1}{2} \right\rfloor$ is T_1 . Let $deg_{T_i}(x) = \left\lfloor \frac{n+1}{2} \right\rfloor + j$. Since n-(n-h+1+j) = h-j-1, there are j forests say $T_2, T_3, \ldots, T_{j+1}$ with $deg_{T_i}(x) = 0$ for all $i \in \{2, 3, \ldots, j+1\}$. Since $n-h+2 \geq 2$ if n>3, there are at least two vertices y with $xy \in E(T_1)$. Let y be such that $xy \in E(T_1)$. Since $1+2(n-h+1) \geq n+1$, we have $deg_{T_i}(y) < n-h+1$ for some $i \in \{2, 3, \ldots, j+1\}$ if $j \geq 2$. Assume $deg_{T_{j+1}}(y) < n-h+1$. Then xy is (j+1)-admissible and we can insert xy into T_{j+1} . We decreased $deg_{T_1}(x)$ by one.

Now we have j-1 forests T_2, T_3, \ldots, T_j with $deg_{T_i}(x) = 0$ for all $i \in \{2, 3, \ldots, j\}$. Let y be such that $xy \in E(T_1)$. If $j-1 \geq 2$, xy is i-admissible for some $i \in \{2, 3, \ldots, j\}$ and we can insert xy into T_i .

Thus, j-1 neighbours of x in T_1 we can insert into T_i , $i \in \{2,3,\ldots,j+1\}$. Then $deg_{T_1}(x)=n-h+2$ and there is a forest say T_2 with $deg_{T_2}(x)=0$. But $deg_{T_2}(y) \geq n-h+1$ for all y with $xy \in E(T_1)$ since otherwise we get a contradiction with the original choice of T_1, T_2, \ldots, T_k in Γ .

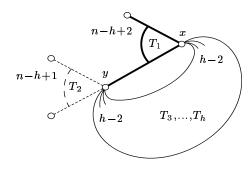


Fig. 1

The edge xy is *i*-admissible if x and y are in distinct components of T_i , i > 2, because of $(n - h + 2) + (n - h + 1) \ge n + 1$ (see Fig. 1). Thus,

$$deg_{T_1}(x) = n - h + 2$$
 and $deg_{T_i}(x) = 1, i = 3, 4, ..., h,$
 $deg_{T_2}(y) = n - h + 1$ and $deg_{T_i}(y) = 1, i = 1, 3, 4, ..., h$

for all y with $xy \in E(T_1)$ because Γ is n-regular (see Fig. 1).

Let y be a fixed vertex of $V\Gamma$ with $xy \in E(T_1)$. Then x and y are joined by a path in T_3 . Let us denote $y=a_0, a_1, \ldots, a_m=x$ the vertices of this path (see Fig. 2).

We claim $deg_{T_1}(a_1) \geq n - h + 1$. Otherwise we can insert a_1a_0 into T_1 and xy into T_3 . We get again forests because xy is 3-admissible if $a_1a_0 \notin E(T_3)$, and a_1a_0 is 1-admissible if $xy \notin E(T_1)$. But then

 $deg_{T_1}(x) = n - h + 1$ that is a contradiction with the original choice of T_1, T_2, \ldots, T_k in Γ .

Vertices a_0 and a_1 must be in the same component of T_i , i = 4, 5, ..., h. Otherwise we can insert $a_1 a_0$ into T_i and xy into T_3 , because $a_1 a_0$ is *i*-admissible. Thus, $deg_{T_i}(a_1) \geq 1$, i > 3.

We have the following identities:

 $deg_{T_3}(a_1) = 2$, $deg_{T_1}(a_1) = n - h + 1$, $deg_{T_i}(a_1) = 1$, i > 3, because $n = deg_{\Gamma}(a_1) \ge 2 + (n - h + 1) + h - 3 = n$.

Analogously, we show that $deg_{T_2}(a_2) \geq n - h + 1$ because otherwise we can insert a_1a_2 into T_2 and xy into T_3 . Similarly a_2 and a_1 must be in the same component of T_i for each i > 3 because otherwise we can insert a_1a_2 into T_i and xy into T_3 (see Fig. 2). It means that:

 $deg_{T_3}(a_2) = 2$, $deg_{T_2}(a_2) = n - h + 1$, $deg_{T_i}(a_2) = 1$, i > 3. We can repeat this construction till a_m is reached. Finally we obtain: $deg_{T_3}(x) = 1$, $deg_{T_1}(x) = n - h + 2$, $deg_{T_i}(x) = 1$, i > 3.

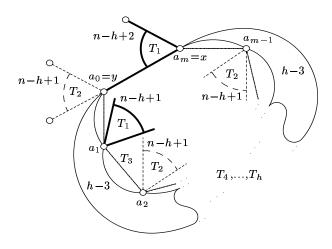


Fig. 2

Hence $deg_{T_3}(x)=deg_{T_3}(y)=1$ and $deg_{T_3}(a_i)=2$, $i=1,2,\ldots,m-1$. But as we mentioned above, there exists $\overline{y} \neq y$ with $\overline{y}x \in E(T_1)$. We obtain existence of a path in T_3 with vertices $\overline{y}=b_0,b_1,\ldots,b_{\overline{m}}=x$ by an analogous process. Here $deg_{T_3}(\overline{y})=deg_{T_3}(x)=1$ and $deg_{T_3}(b_i)=2$, $i=1,2,\ldots,\overline{m}-1$. It means that x,y and \overline{y} are three distinct vertices of degree 1 in linear tree that is a contradiction.

This concludes the proof of Theorem 1. \square

We have proved that every n-regular graph, for which n > 3, can be decomposed into $\left\lceil \frac{n+1}{2} \right\rceil$ forests with maximum degree $\left\lfloor \frac{n+1}{2} \right\rfloor$. Assumption n > 3 was used to establish three forests, which yield the path a_0, a_1, \ldots, a_m in the proof. Since $\left\lfloor \frac{n+1}{2} \right\rfloor = 2$ if n = 4, we proved the Conjecture 1 for n = 4.

Every graph of degree not greater than k can be completed to k-regular graph by adding new vertices and edges. So Theorem 1 imply that each graph Γ with $\Delta(\Gamma) = k$ can be decomposed into $\lceil \frac{k+1}{2} \rceil$ forests of degree not greater than $\lfloor \frac{k+1}{2} \rfloor$. The decreasing of degrees in forests to some function asymptotically equal even to o(n) is still open.

ACKNOWLEDGEMENT

I would thank to S. Poljak and P. Tomasta for their interest in this work and helpful comments.

References

- [1] Aït-djafer H., Linear arboricity for graphs with maximum degree six or seven and edge multiplicity two, Ars Combin. 22 (1985), A, 5-16.
- [2] Aït-djafer H., Linear arboricity for graphs with multiple edges, J. Graph Theory 11 (1987), 135-140.
- [3] Akiyama J., Exoo G., Harrary F., Covering and packing in graphs III. Cyclic and acyclic invariants, Math. Slovaca 30 (1980), 405-417.
- [4] Akiyama J., Exoo G., Harrary F., Covering and packing in graphs IV. Linear arboricity, Networks 11 (1981), 69-72.
- [5] Alon N., The linear arboricity of graphs, Israel J. Math. 62 (1988), 311-325.
- [6] Enomoto H., Peroche B., The linear arboricity of some regular graphs, J. Graph Theory 8 (1984), 309-324.
- [7] Guldan F., The linear arboricity of 10-regular graphs, Math. Slovaca 36 (1986), 225-228.
- [8] Horák P., Niepel E., A short proof of a linear arboricity theorem for cubic graphs, Acta Math. Univ. Comenianae XL-XLI (1982), 275-277.
- [9] Nash-Williams C. St. J. A., Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445-450.
- [10] Lash-Williams C. St. J. A., Decompositions of finite graphs into forests, J. London Math. Soc. **39** (1964), 12.
- [11] Tomasta P., Note on linear arboricity, Math. Slovaca 32 (1982), 239-242.
- [12] Litte W. T., On the problem of decomposing a graph into n connected factors, J. London Math. Soc. **36** (1961), 221-230.